Skip to main content
Log in

Three-dimensional (3D) modeling of the thermoelastic behavior of woven glass fiber-reinforced resin matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermoelastic behavior of glass fiber-reinforced resin matrix composites is very important in several applications such as electronic packaging. Simulation of the composite behavior is complicated because of the complex nature of woven fiber architecture. In this study, we have conducted a numerical simulation of elastic and thermal expansion behavior of woven glass fiber-reinforced resin matrix composite. The simulations were compared to experimental data, showing excellent agreement with elastic properties and fairly good results for the thermal expansion coefficient of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kutz M (ed) (2002) Handbook of materials selection. Wiley, New York

    Google Scholar 

  2. Glazer JJ (1994) J Electron Mater 23(8):693. doi:https://doi.org/10.1007/BF02651361

    Article  CAS  Google Scholar 

  3. Wood EP, Nimmo KL (1994) J Electron Mater 23:709. doi:https://doi.org/10.1007/BF02651363

    Article  CAS  Google Scholar 

  4. Abtew M, Selvardery G (2000) Mater Sci Eng Rep 27:95. doi:https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  5. Deng X, Piotrowski G, Williams JJ, Chawla N (2003) J Electron Mater 32:1403. doi:https://doi.org/10.1007/s11664-003-0108-0

    Article  CAS  Google Scholar 

  6. Wu CML, Lai JKL, Wu YL (1998) Finite Elem Anal Des 30:19. doi:https://doi.org/10.1016/S0168-874X(98)00028-6

    Article  Google Scholar 

  7. Yamada SE (1987) Eng Fract Mech 27:315. doi:https://doi.org/10.1016/0013-7944(87)90149-4

    Article  Google Scholar 

  8. Rice JR (1988) J Appl Mech Trans ASME 55:98

    Article  Google Scholar 

  9. Xie DJ, Wang ZP (1998) Finite Elem Anal Des 30:31. doi:https://doi.org/10.1016/S0168-874X(98)00032-8

    Article  Google Scholar 

  10. Darveaux R, Banerji K, Mawer A, Dody G (1995) In: Lau JH (ed) Ball grid array technology. McGraw-Hill, New York, p 379

    Google Scholar 

  11. Solomon HD (1994) In: Fear DR, Burchett SN, Morgan HS, Lau JH (eds) The mechanics of solder alloy interconnects. Van Norstrand Reinhold, New York, p 199

    Google Scholar 

  12. Yang QJ, Shi XQ, Wang ZP, Shi ZF (2003) Finite Elem Anal Des 39:819. doi:https://doi.org/10.1016/S0168-874X(02)00134-8

    Article  Google Scholar 

  13. Lau JH, Pao YH (1997) Solder joint reliability of BGA, CSP, flip chip, and fine pitch smt assemblies. McGraw-Hill, New York

    Google Scholar 

  14. Shi XQ, Zhou W, Pang HLJ, Wang ZP (1999) J Electron Packaging 121(3):179. doi:https://doi.org/10.1115/1.2792681

    Article  Google Scholar 

  15. Tabiei A, Ivanov I (2004) Int J Non-linear Mech 39:175. doi:https://doi.org/10.1016/S0020-7462(02)00067-7

    Article  Google Scholar 

  16. Ishikawa T, Chou TW (1982) J Compos Mater 16:2. doi:https://doi.org/10.1177/002199838201600101

    Article  Google Scholar 

  17. Hahn HT, Tsai SW (1973) J Compos Mater 7:102

    Article  CAS  Google Scholar 

  18. Naik RA (1995) J Compos Mater 29:2334

    Article  Google Scholar 

  19. Ivanov I, Tabiei A (2001) Compos Struct 54(4):489. doi:https://doi.org/10.1016/S0263-8223(01)00121-0

    Article  Google Scholar 

  20. Seifert OE, Schumacher SC, Hansen AC (2003) Compos Part B 34:571. doi:https://doi.org/10.1016/S1359-8368(03)00078-7

    Article  Google Scholar 

  21. Zako M, Uetsuji Y, Kurashiki T (2003) Compos Sci Technol 63:507. doi:https://doi.org/10.1016/S0266-3538(02)00211-7

    Article  CAS  Google Scholar 

  22. Ellyin F, Xia Z, Chen Y (2002) Compos Part A 33:399. doi:https://doi.org/10.1016/S1359-835X(01)00112-9

    Article  Google Scholar 

  23. Chawla N, Tur YK, Holmes JW, Barber JR, Szweda A (1998) J Am Ceram Soc 81:1221

    Article  CAS  Google Scholar 

  24. Shuler SF, Holmes JW, Wu X, Roach D (1993) J Am Ceram Soc 76:2327. doi:https://doi.org/10.1111/j.1151-2916.1993.tb07772.x

    Article  CAS  Google Scholar 

  25. Chawla N, Chawla KK (2006) Metal matrix composites. Springer, New York

    Google Scholar 

  26. Schapery RA (1968) J Compos Mater 2:380. doi:https://doi.org/10.1177/002199836800200308

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this work from Isola Laminates Inc. We thank Mr. Tarun Amla for providing the experimental data for Young’s modulus and coefficient of thermal expansion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Chawla, N. Three-dimensional (3D) modeling of the thermoelastic behavior of woven glass fiber-reinforced resin matrix composites. J Mater Sci 43, 6468–6472 (2008). https://doi.org/10.1007/s10853-008-2982-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2982-6

Keywords

Navigation