Skip to main content
Log in

Gadolinium doping of vanadate-tellurate glasses and glass ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to further elucidate the local structure of ternary xGd2O3(100 − x)[0.7TeO2 · 0.3V2O5] glasses with x = 0, 5, 10, 15, 20 mol%, FTIR spectroscopy, XRD diffraction and density measurement were performed. FTIR and density data show that by increasing the gadolinium ions content of the samples the excess of oxygen may be accommodated by the inter-conversion of some [VO4] into [VO5] structural units and of [TeO3] into [TeO4] units. The composition of the heat-treated glasses was found to consist mainly of the Te2V2O9 crystalline phase. Varying x between 15 and 20 mol% Gd2O3 produces structural modification having as result an increase of the glass network polymerization degree. Accordingly, the gadolinium ions play a particular role related to the improvement of the homogeneity of the glasses and in accommodating the glass network with the excess of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gaman VI, Peznikov VA, Fedyainova NI, Vyssh UZV (1972) Zaved Fiz 2:57

    Google Scholar 

  2. Sidkey MA, El Mallawany R, Nakhla RI, Abd El-Moneim A (1997) J Non-Cryst Solids 215:75

    Article  CAS  Google Scholar 

  3. Chowdari BVR, Tan KL, Ling F (2000) J Mater Sci 35:2015. doi:https://doi.org/10.1023/A:1004743208488

    Article  CAS  Google Scholar 

  4. Rolli R, Gatterer K, Wachtler M, Bettinelli M, Speghini A, Ajo D (2001) Spectrochim Acta A 57:2009. doi:https://doi.org/10.1016/S1386-1425(01)00474-7

    Article  CAS  Google Scholar 

  5. Kim SH, Yoko T (1995) J Am Ceram Soc 78:1061. doi:https://doi.org/10.1111/j.1151-2916.1995.tb08437.x

    Article  CAS  Google Scholar 

  6. Lindquist O (1968) Acta Chem Scand 22:87

    Google Scholar 

  7. Galy J, Lindquist O (1979) J Solid State Chem 27:279. doi:https://doi.org/10.1016/0022-4596(79)90168-3

    Article  CAS  Google Scholar 

  8. Dimitriev Y, Dimitriev V (1978) Mater Res Bull 13:1071. doi:https://doi.org/10.1016/0025-5408(78)90173-3

    Article  CAS  Google Scholar 

  9. Ahmed MM, Hogarth CA (1983) J Mater Sci Lett 2(6):254. doi:https://doi.org/10.1007/BF00723249

    Article  CAS  Google Scholar 

  10. Ghosh A, Chaudhuri BK (1987) J Mater Sci 22:2369. doi:https://doi.org/10.1007/BF01082118

    Article  CAS  Google Scholar 

  11. Eraiah B, Anavekar EV, Asokan ES (2007) J Mater Sci 42:784. doi:https://doi.org/10.1007/s10853-006-1446-0

    Article  CAS  Google Scholar 

  12. Sekiya T, Mochida N, Ogawa S (1994) J Non-Cryst Solids 176:105. doi:https://doi.org/10.1016/0022-3093(94)90067-1

    Article  CAS  Google Scholar 

  13. Shaltout I, Tang Y, Braunstein R, Abu-Elazm AM (1995) J Phys Chem Solids 56:141. doi:https://doi.org/10.1016/0022-3697(94)00150-2

    Article  CAS  Google Scholar 

  14. Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713. doi:https://doi.org/10.1007/s10853-008-2601-6

    Article  CAS  Google Scholar 

  15. Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc Relat Phenom 71:249. doi:https://doi.org/10.1016/0368-2048(94)02291-7

    Article  CAS  Google Scholar 

  16. Miyata H, Fujii K, Ono T, Kubokawa Y, Ohno T, Hatayama F (1987) J Chem Soc Faraday Trans 83:675

    Article  CAS  Google Scholar 

  17. Culea E, Nicula Al, Bratu I (1984) Phys Stat Sol 83:K15. doi:https://doi.org/10.1002/pssa.2210830152

    Article  CAS  Google Scholar 

  18. Dimitrov V (1987) J Solid State Chem 66:256. doi:https://doi.org/10.1016/0022-4596(87)90195-2

    Article  CAS  Google Scholar 

  19. Khattak GD, Tabet N, Wenger LE (2005) Phys Rev B 72:104203. doi:https://doi.org/10.1103/PhysRevB.72.104203

    Article  Google Scholar 

  20. de Waal D, Hutter C (1994) Mater Res Bull 29:843. doi:https://doi.org/10.1016/0025-5408(94)90004-3

    Article  Google Scholar 

  21. Manara D, Grandjean A, Pinet O, Dussossoy JL, Neuville DR (2007) J Non-Cryst Solids 353:12

    Article  CAS  Google Scholar 

  22. Microcal (TM) Origin, version 6.0. Microcal Software, Inc., Northampton, MA

  23. Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424. doi:https://doi.org/10.1007/s10854-007-9359-5

    Article  CAS  Google Scholar 

  24. Khattak GD, Tabet N, Wenger LE (2005) Phys Rev B 72:104202. doi:https://doi.org/10.1103/PhysRevB.72.104203

    Article  Google Scholar 

  25. Ganguli M, Rao KJ (1999) J Solid State Chem 145:65. doi:https://doi.org/10.1006/jssc.1999.8221

    Article  CAS  Google Scholar 

  26. Fayon F, Bessada C, Coutures JP, Massiot D (1999) Inorg Chem 38:5212. doi:https://doi.org/10.1021/ic990375p

    Article  CAS  Google Scholar 

  27. Abid M, Et-labirou M, Taibi M (2003) Mater Sci Eng B 97:20. doi:https://doi.org/10.1016/S0921-5107(02)00390-2

    Article  Google Scholar 

  28. Hanon A, Grimley D, Hulme R, Wright A, Sincler R (1994) J Non-Cryst Solids 177:299. doi:https://doi.org/10.1016/0022-3093(94)90544-4

    Article  Google Scholar 

  29. Rada S, Culea M, Neumann M, Culea E (2008) Chem Phys Lett 460(1–3):196. doi:https://doi.org/10.1016/j.cplett.2008.05.088

    Article  CAS  Google Scholar 

  30. Rada S, Pascuta P, Bosca M, Culea M, Pop L, Culea E (2008) Vibrat Spectrosc. doi:https://doi.org/10.1016/j.vibspec.2007.12.005

    Article  CAS  Google Scholar 

  31. Rada S, Culea E, Bosca M, Culea M, Muntean R, Pascuta P (2008) Vibrat Spectrosc. doi:https://doi.org/10.1016/j.vibspec.2008.04.001

    Article  CAS  Google Scholar 

  32. Pop L, Culea E, Bosca M, Neumann M, Muntean R, Pascuta P et al (2008) J Optoelectr Adv Mater 10(3):619

    CAS  Google Scholar 

  33. Sabadel JC, Armand P, Cachau-Herreillat D, Baldeck P, Doclot O, Ibanez A et al (1997) J Solid State Chem 132:411. doi:https://doi.org/10.1006/jssc.1997.7499

    Article  CAS  Google Scholar 

  34. Fargin E, Berthereau A, Cardinal T, Le Flem G, Ducase L, Canioni L et al (1996) J Non-Cryst Solids 203:96. doi:https://doi.org/10.1016/0022-3093(96)00338-9

    Article  CAS  Google Scholar 

  35. Manara D, Grandjean A, Pinet O, Dussossoy JL, Neuville DR (2007) J Non-Cryst Solids 353:12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Rada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rada, S., Culea, E. & Culea, M. Gadolinium doping of vanadate-tellurate glasses and glass ceramics. J Mater Sci 43, 6480–6485 (2008). https://doi.org/10.1007/s10853-008-2980-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2980-8

Keywords

Navigation