Journal of Materials Science

, Volume 43, Issue 19, pp 6459–6467 | Cite as

Orientational distribution of parent–daughter structure of isotactic polypropylene: a study using simultaneous synchrotron WAXS and SAXS



The molecular and lamellar orientations of injection-moulded isotactic polypropylene were investigated using simultaneous wide- and small-angle X-ray scatterings. In order to obtain the meaningful degree of molecular orientation with respect to the flow direction, the axis orientations of parent and daughter lamellae were separately calculated. The molecular orientation of thin material is consistent with the lamellar orientation. However, the decrease in the lamellar orientation of thick material is associated with a constant degree of molecular orientation, which would indicate an intra slip between parent lamellae along the flow direction.


Flow Direction Orientation Function Molecular Orientation Isotactic Polypropylene Crystalline Lamella 



This work was performed at the Australian National Beamline Facility (ANBF) with support from the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. The authors are grateful to Dr. James Hester of ANSTO and Dr. Peter Farrington of Moldflow for their help in the experiments.


  1. 1.
    Stern C, Frick A, Weickert G (2007) J Appl Polym Sci 103:519. doi: 10.1002/app.24156 CrossRefGoogle Scholar
  2. 2.
    Katti SS, Schultz J (1982) Polym Eng Sci 22:1001. doi: 10.1002/pen.760221602 CrossRefGoogle Scholar
  3. 3.
    Fujiyama M, Wakino T, Kawasaki Y (1988) J Appl Polym Sci 35:129. doi: 10.1002/app.1988.070350104 CrossRefGoogle Scholar
  4. 4.
    Zipper P, Janosi A, Wrentschur E, Abuja PM (1991) J Appl Cryst 24:702. doi: 10.1107/S0021889891001917 CrossRefGoogle Scholar
  5. 5.
    Na B, Fu Q (2002) Polymer 43:7367. doi: 10.1016/S0032-3861(02)00637-7 CrossRefGoogle Scholar
  6. 6.
    Zhang W, Martins JA (2007) Polymer 48:6215. doi: 10.1016/j.polymer.2007.08.029 CrossRefGoogle Scholar
  7. 7.
    Eder G, Janeschitz-Kriegl H (1997) Mater Sci Technol 18:268Google Scholar
  8. 8.
    Ogino Y, Fukushima H, Takahashi N, Matsuba G, Nishida K, Kanaya T (2006) Macromolecules 39:7617. doi: 10.1021/ma061254t CrossRefGoogle Scholar
  9. 9.
    Lotz B, Wittmann C, Lovinger A (1996) Polymer 37:4979. doi: 10.1016/0032-3861(96)00370-9 CrossRefGoogle Scholar
  10. 10.
    Dean DM, Rebenfeld L, Register RA, Hsiao BS (1998) J Mater Sci 33:4797. doi: 10.1023/A:1004474128452 CrossRefGoogle Scholar
  11. 11.
    Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner HD, Marom G (2001) Polymer 42:6231. doi: 10.1016/S0032-3861(01)00087-8 CrossRefGoogle Scholar
  12. 12.
    Zhang S, Minus ML, Zhu L, Wong C, Kumar S (2008) Polymer 49:1356. doi: 10.1016/j.polymer.2008.01.018 CrossRefGoogle Scholar
  13. 13.
    Nozue Y, Shinohara Y, Ogawa Y, Sakurai T, Hori H, Kasahara T et al (2007) Macromolecules 40:2036. doi: 10.1021/ma061924v CrossRefGoogle Scholar
  14. 14.
    Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, NYGoogle Scholar
  15. 15.
    Zhu PW, Tung J, Phillips A, Edward G (2006) Macromolecules 39:1821. doi: 10.1021/ma052375g CrossRefGoogle Scholar
  16. 16.
    Wilchinsky ZW (1960) J Appl Phys 31:1969. doi: 10.1063/1.1735481 CrossRefGoogle Scholar
  17. 17.
    Schrauwen BAG, Breemen LCAv, Spoelstra AB, Govaert LE, Peters GWM, Meijer HEH (2004) Macromolecules 37:8618. doi: 10.1021/ma048884k CrossRefGoogle Scholar
  18. 18.
    Keates P, Mitchell GR, Peuvrel-Disdier E, Navard P (1993) Polymer 34:1316. doi: 10.1016/0032-3861(93)90792-9 CrossRefGoogle Scholar
  19. 19.
    Wang Y, Na B, Zhang Q, Tan H, Xiao Y, Li L et al (2005) J Mater Sci 40:6409. doi: 10.1007/s10853-005-1746-9 CrossRefGoogle Scholar
  20. 20.
    Dukoski I, Muthukumar M (2003) J Chem Phys 118:6648. doi: 10.1063/1.1557473 CrossRefGoogle Scholar
  21. 21.
    Hill MJ, Keller A (1981) Colloid Polym Sci 259:335. doi: 10.1007/BF01524712 CrossRefGoogle Scholar
  22. 22.
    Koscher E, Fulchiron R (2002) Polymer 43:6931. doi: 10.1016/S0032-3861(02)00628-6 CrossRefGoogle Scholar
  23. 23.
    Liu T, Petermann J, He C, Liu Z, Chung T (2001) Macromolecules 34:4305. doi: 10.1021/ma010380o CrossRefGoogle Scholar
  24. 24.
    Zuo F, Keum JK, Yang L, Somani RH, Hsiao B (2006) Macromolecules 39:2209. doi: 10.1021/ma052340g CrossRefGoogle Scholar
  25. 25.
    Strobl G (2000) Eur Phys J E3:165Google Scholar
  26. 26.
    Hiss R, Hoberika S, Lynn C, Strobl G (1999) Macromolecules 32:4390. doi: 10.1021/ma981776b CrossRefGoogle Scholar
  27. 27.
    Men Y, Rieger J, Strobl G (2003) Phys Rev Lett 91:095502. doi: 10.1103/PhysRevLett.91.095502 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Engineering, Cooperative Research Center for PolymersMonash UniversityClaytonAustralia

Personalised recommendations