Skip to main content
Log in

Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to structural and textural heterogeneities and a high content of stored energy, annealing of nanostructured metals is difficult to control in order to avoid non-uniform coarsening and recrystallization. The present research demonstrates a method to homogenize the structure by annealing at low temperature before annealing at high temperature. By this two-step process, the structure is homogenized and the stored energy is reduced significantly during the first annealing step. As an example, high-purity aluminum has been deformed to a total reduction of 98.4% (equivalent strain of 4.8) by accumulative roll-bonding at room temperature. Isochronal annealing for 0.5 h of the deformed samples shows the occurrence of recrystallization at 200 °C and above. However, when introducing an annealing step for 6 h at 175 °C, no significant recrystallization is observed and relatively homogeneous structures are obtained when the samples afterwards are annealed at higher temperatures up to 300 °C. To underpin these observations, the structural evolution has been characterized by transmission electron microscopy, showing that significant annihilation of high-angle boundaries, low-angle dislocation boundaries, and dislocations characterizes the low-temperature annealing step. In a discussion, the observed annealing behavior is related to these structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altan BS, Miskioglu I, Purcek G, Mulyukov RR, Artan R (2006) Severe plastic deformation: towards bulk production of nanostructured materials. NOVA Science Publishers, New York

    Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi:https://doi.org/10.1016/j.pmatsci.2006.02.003

    CAS  Google Scholar 

  4. Horita Z et al (1996) J Mater Res 11:1880. doi:https://doi.org/10.1557/JMR.1996.0239

    Article  CAS  Google Scholar 

  5. Segal VM (1995) Mater Sci Eng A 197:157. doi:https://doi.org/10.1016/0921-5093(95)09705-8

    Article  Google Scholar 

  6. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143. doi:https://doi.org/10.1016/1359-6462(96)00107-8

    Article  CAS  Google Scholar 

  7. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579. doi:https://doi.org/10.1016/S1359-6454(98)00365-6

    Article  CAS  Google Scholar 

  8. Tsuji N, Kamikawa N, Kim HW, Minamino Y (2004) Ultrafine grained materials III. TMS, Ohio, p 219

    Google Scholar 

  9. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427. doi:https://doi.org/10.1016/j.pmatsci.2005.08.003

    Article  CAS  Google Scholar 

  10. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scr Mater 47:893. doi:https://doi.org/10.1016/S1359-6462(02)00282-8

    Article  CAS  Google Scholar 

  11. Li BL, Godfrey A, Meng QC, Liu Q, Hansen N (2004) Acta Mater 52:1069. doi:https://doi.org/10.1016/j.actamat.2003.10.040

    Article  CAS  Google Scholar 

  12. Wang YM et al (2004) Scr Mater 51:1023. doi:https://doi.org/10.1016/j.scriptamat.2004.08.015

    Article  CAS  Google Scholar 

  13. Yu CY, Kao PW, Chang CP (2005) Acta Mater 53:4019. doi:https://doi.org/10.1016/j.actamat.2005.05.005

    Article  CAS  Google Scholar 

  14. Xing ZP, Kang SB, Kim HW (2002) J Mater Sci 37:717. doi:https://doi.org/10.1023/A:1013879528697

    Article  CAS  Google Scholar 

  15. Terada D, Inoue S, Tsuji N (2007) J Mater Sci 42:1673. doi:https://doi.org/10.1007/s10853-006-0909-7

    Article  CAS  Google Scholar 

  16. Wang J et al (1996) Acta Mater 44:2973. doi:https://doi.org/10.1016/1359-6454(95)00395-9

    Article  CAS  Google Scholar 

  17. Hasegawa H et al (1999) Mater Sci Eng A 265:188. doi:https://doi.org/10.1016/S0921-5093(98)01136-8

    Article  Google Scholar 

  18. Cao WQ, Godfrey A, Hansen N, Liu Q, Metall Mater Trans, accepted for publication

  19. Prangnell PB, Hayes JS, Bowen JR, Apps PJ, Bate PS (2004) Acta Mater 52:3193. doi:https://doi.org/10.1016/j.actamat.2004.03.019

    Article  CAS  Google Scholar 

  20. Jazaeri H, Humphreys FJ (2004) Acta Mater 52:3251. doi:https://doi.org/10.1016/j.actamat.2004.03.031

    Article  CAS  Google Scholar 

  21. Kamikawa N, Tsuji N, Huang X, Hansen N (2006) Acta Mater 54:3055. doi:https://doi.org/10.1016/j.actamat.2006.02.046

    Article  CAS  Google Scholar 

  22. Li XL, Liu W, Godfrey A, Juul Jensen D, Liu Q (2007) Acta Mater 55:3531. doi:https://doi.org/10.1016/j.actamat.2007.02.005

    Article  CAS  Google Scholar 

  23. Kamikawa N, Tsuji N, Huang X, Hansen N, Minamino Y (2006) Mater Sci Forum 512:91

    Article  CAS  Google Scholar 

  24. Liu Q (1994) J Appl Cryst 27:755. doi:https://doi.org/10.1107/S0021889894002062

    Article  CAS  Google Scholar 

  25. Kamikawa N, Tsuji N, Huang X, Hansen N (2007) Mater Trans 48:1978. doi:https://doi.org/10.2320/matertrans.MA200702

    Article  CAS  Google Scholar 

  26. Hughes DA, Hansen N (2000) Acta Mater 48:2985. doi:https://doi.org/10.1016/S1359-6454(00)00082-3

    Article  CAS  Google Scholar 

  27. Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 50:3789. doi:https://doi.org/10.1016/S1359-6454(02)00174-X

    Article  CAS  Google Scholar 

  28. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing behavior. Pergamon, New York

    Google Scholar 

  29. Nazarov AA, Romanov AE, Valiev RZ (1993) Acta Metall Mater 41:1033. doi:https://doi.org/10.1016/0956-7151(93)90152-I

    Article  CAS  Google Scholar 

  30. Lian J, Valiev RZ, Baudelet B (1995) Acta Metall Mater 43:4165. doi:https://doi.org/10.1016/0956-7151(95)00087-C

    Article  CAS  Google Scholar 

  31. Horita Z et al (1996) Mater Charact 37:285. doi:https://doi.org/10.1016/S1044-5803(96)00178-7

    Article  CAS  Google Scholar 

  32. Valiev RZ (2003) Adv Eng Mater 5:296. doi:https://doi.org/10.1002/adem.200310089

    Article  CAS  Google Scholar 

  33. Hansen N, Huang X, Møller MG, Godfrey A (2008) J Mater Sci. doi:https://doi.org/10.1007/s10853-008-2874-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Danish National Research Foundation for supporting the Center for Fundamental Research: Metal Structures in Four Dimension, within which this work was performed. The authors also thank Prof. B. Ralph for useful comments and language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamikawa, N., Huang, X. & Hansen, N. Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding. J Mater Sci 43, 7313–7319 (2008). https://doi.org/10.1007/s10853-008-2964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2964-8

Keywords

Navigation