Skip to main content
Log in

Titania-coated glass microballoons and cenospheres for environmental applications

  • Syntactic and Composite Foams
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Functional titania coatings on glass microballoons (GMBs) and cenospheres have a broad range of potential environmental applications, primarily in purification of drinking water and treatment of industrial wastewater. The heterogeneous photocatalytic capabilities of titania films and particles have been extensively examined in the literature as effective alternatives to current technologies. Although the chemistry of titania films for photocatalysis has been studied, titania-coated GMBs have not yet been extensively considered and the materials science aspects of the titania-GMB and titania-cenosphere systems have not been addressed. We have examined the microstructure, morphology, and mechanical properties of titania coatings on both cenospheres and commercially produced GMBs. Scanning electron microscopy was used to examine coating coverage and defects. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used for element and phase identification, respectively. Hardness and modulus measurements of the titania coatings and the GMB and cenosphere materials were done by nanoindentation. Additionally, the photocatalytic activity of the titania-coated GMB system was tested on Procion Red dye using two different types of mixing, a magnetic stirrer and an aeration bubbler apparatus. The titania coatings showed good coverage and retention except in the case of magnetic stirring, where significant coating loss was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carlisle K, Chawla KK, Gladysz G, Koopman M (2006) J Mater Sci A 41:3961. doi:https://doi.org/10.1007/s10853-006-7571-y

    Article  CAS  Google Scholar 

  2. Herrmann J (1999) Catal Today 53:115. doi:https://doi.org/10.1016/S0920-5861(99)00107-8

    Article  CAS  Google Scholar 

  3. Gelover S, Gomez L, Reyes K, Leal T (2006) Water Res 40:3274. doi:https://doi.org/10.1016/j.watres.2006.07.006

    Article  CAS  Google Scholar 

  4. Kumar S, Fedorov A, Gole J (2005) Appl Catal Environ 57:93. doi:https://doi.org/10.1016/j.apcatb.2004.10.012

    Article  CAS  Google Scholar 

  5. Assabane A, Ichou Y, Tahiri H, Guillard C, Hermann J (2000) J Appl Catal Environ 24:71. doi:https://doi.org/10.1016/S0926-3373(99)00094-6

    Article  CAS  Google Scholar 

  6. Visnescu C, Sanijines R, Levy F, Parvulescu V (2005) Appl Catal Environ 60:155. doi:https://doi.org/10.1016/j.apcatb.2005.02.029

    Article  Google Scholar 

  7. Nair M, Zhenhao L, Heller A (1993) Ind Eng Chem Res 32:2318. doi:https://doi.org/10.1021/ie00022a015

    Article  CAS  Google Scholar 

  8. Krichevskaya M, Malygina T, Peis S, Kallas J (2001) Water Sci Technol 44:1

    CAS  Google Scholar 

  9. Petrowski J, Bulska A, Jozwiak W (2005) Environ Protein Eng 31:61

    Google Scholar 

  10. Stokke J, Mazyck D, Wu C, Sheahan R (2006) Environ Prog 25:312. doi:https://doi.org/10.1002/ep.10164

    Article  CAS  Google Scholar 

  11. Faisal M, Tariq M, Muneer M (2007) Dyes Pigments 72:233. doi:https://doi.org/10.1016/j.dyepig.2005.08.020

    Article  CAS  Google Scholar 

  12. Yu J, Ho W, Yu J, Yip H, Wong P, Zhao J (2005) Environ Sci Technol 39:1175. doi:https://doi.org/10.1021/es035374h

    Article  CAS  Google Scholar 

  13. Christensen P, Curtis T, Egerton T, Kosa S, Timlin J (2003) Appl Catal Environ 41:371. doi:https://doi.org/10.1016/S0926-3373(02)00172-8

    Article  CAS  Google Scholar 

  14. Shifu C, Gengyu C (2005) Sol Energy 79:1. doi:https://doi.org/10.1016/j.solener.2004.10.006

    Article  Google Scholar 

  15. Preis S, Krichevskaya M, Karchenko A (1997) Water Sci Technol 35:265. doi:https://doi.org/10.1016/S0273-1223(97)00034-6

    Article  Google Scholar 

  16. Carlisle K, Lewis M, Chawla KK, Koopman M, Gladysz G (2007) Acta Mater 55:2301. doi:https://doi.org/10.1016/j.actamat.2006.11.026

    Article  CAS  Google Scholar 

  17. Bockmeyer M, Lohmann P (2007) Thin Solid Films 515:5212. doi:https://doi.org/10.1016/j.tsf.2006.11.193

    Article  CAS  Google Scholar 

  18. Jagtap N, Bhagwat M, Awati P, Ramawamy V (2005) Thermochim Acta 427:37. doi:https://doi.org/10.1016/j.tca.2004.08.011

    Article  CAS  Google Scholar 

  19. Haldimann M (2006) Fracture strength of structural glass elements—analytical and numerical modeling, testing and design, dissertation 3671 de Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

  20. Chawla KK (1998) Composite materials, 2nd edn. Springer, New York

    Book  Google Scholar 

  21. Gouadec G, Colomban P (2007) Prog Cryst Growth Character Mater 55:1. doi:https://doi.org/10.1016/j.pcrysgrow.2007.01.001

    Article  Google Scholar 

  22. Lee J, Kong S, Kim W, Kim J (2007) Mater Chem Phys 106:39. doi:https://doi.org/10.1016/j.matchemphys.2007.05.019

    Article  CAS  Google Scholar 

  23. Sanz J, Soriano L, Prieto P, Tyuliev G, Morant C, Elizalde E (1998) Thin Solid Films 332:209. doi:https://doi.org/10.1016/S0040-6090(98)01058-X

    Article  CAS  Google Scholar 

  24. Gao X, Wachs L (1999) Catal Today 51:233. doi:https://doi.org/10.1016/S0920-5861(99)00048-6

    Article  CAS  Google Scholar 

  25. Chiu K, Wong M, Cheng F, Manan H (2007) Appl Surf Sci 253:6762. doi:https://doi.org/10.1016/j.apsusc.2007.01.121

    Article  CAS  Google Scholar 

  26. Olofinjana A, Bell J, Jamting A (2000) Wear 241:174. doi:https://doi.org/10.1016/S0043-1648(00)00372-0

    Article  CAS  Google Scholar 

  27. Boccaccini A, Acevedo D, Brusatin G, Colombo P (2005) J Eur Ceram Soc 25:1515. doi:https://doi.org/10.1016/j.jeurceramsoc.2004.05.015

    Article  CAS  Google Scholar 

  28. Matsunaga T, Kim I, Hardcastele S, Rohatgi P (2002) Mater Sci Eng A 352:333. doi:https://doi.org/10.1016/S0921-5093(01)01466-6

    Article  Google Scholar 

  29. Lachheb H, Puzenat E, Houas E, Ksibi M, Elalouil E, Guillard G, Herrmann J (2002) Appl Catal Environ 39:75. doi:https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  30. So C, Cheng M, Yu J, Wang P (2002) Chemosphere 46:905. doi:https://doi.org/10.1016/S0045-6535(01)00153-9

    Article  CAS  Google Scholar 

  31. Byrne J, Eggins B, Brown M, Mckinney B, Rouse M (1998) Appl Catal Environ 17:25–1. doi:https://doi.org/10.1016/S0926-3373(97)00101-X

    Article  CAS  Google Scholar 

  32. Rachel A, Subrahmanyam M, Bourle P (2002) Appl Catal Environ 37:301. doi:https://doi.org/10.1016/S0926-3373(02)00007-3

    Article  CAS  Google Scholar 

  33. Kontos AI, Kontos AG, Tsoukleris D, Vlachos G, Flaras P (2007) Thin Solid Films 515:7370. doi:https://doi.org/10.1016/j.tsf.2007.02.082

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Science Foundation for their Research Experience for Undergraduates program, as well as a UAB Framework for Global Health Grant, which both supported portions of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koopman, M., Chawla, K.K., Ricci, W. et al. Titania-coated glass microballoons and cenospheres for environmental applications. J Mater Sci 44, 1435–1441 (2009). https://doi.org/10.1007/s10853-008-2963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2963-9

Keywords

Navigation