Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7210–7218 | Cite as

Wet fiber shear flexibility and its contribution to the overall transverse deformation of fibers

  • Dongbo Yan
  • Kecheng Li
Article

Abstract

A new method has been developed for measuring not only bending but also shear flexibility of pulp fibers by using confocal laser scanning microscopy. Based on the Steadman and Luner method, a two-stage wet pressing process was used which enabled both bending and shear flexibility and both bending and shear modulii of fibers to be determined with a single test. Three types of fibers, i.e., bleached spruce Kraft Pulp (BKP), aspen bleached chemi-themomechanical pulp (BCTMP), and aspen themomechanical pulp (CTMP), were tested. Results show that the longitudinal elastic modulii of the fibers are in a range of 3–37 GPa, and the transverse shear modulii of them are in a range of 27–103 MPa. It was also found that the shear contribution to the overall fiber deformation ranged from 60% to 90% for the fibers measured. This substantiates the concept of shear contribution to measured fiber flexibility as proposed by Waterhouse and Page.

Keywords

Confocal Laser Scanning Microscopy Span Length Pulp Fiber Fiber Wall Confocal Laser Scanning Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author would like to acknowledge the financial support of AIF, CFI, and NBIF to this research.

References

  1. 1.
    Forgracs OL, Robertson AA, Mason SG (1957) In: 1st fundamental research symposium, Cambridge, p 447Google Scholar
  2. 2.
    Samuelsson LG (1963) Sven Papperstidn 15(1):S41Google Scholar
  3. 3.
    Kuhn DCS, Lu X, Olson JA, Robertson AG (1995) J Pulp Pap Sci 21(1):337Google Scholar
  4. 4.
    Tam Doo PA, Kerekes RJ (1981) Tappi J 64:113Google Scholar
  5. 5.
    Steadman R, Luner P (1981) 8th fundamental research symposium, p 211Google Scholar
  6. 6.
    Waterhouse JF, Page DH (2004) Nord Pulp Pap Res J 19:89. doi: 10.3183/NPPRJ-2004-19-01-p089-092 CrossRefGoogle Scholar
  7. 7.
    Mohlin UB (1975) Sven Papperstidn 78(11):412Google Scholar
  8. 8.
    Ruhlemann F (1926) Pap Trade J 82(13):T168Google Scholar
  9. 9.
    Jayne BA (1959) Tappi J 42:461Google Scholar
  10. 10.
    Leopold B (1966) Tappi J 49:315Google Scholar
  11. 11.
    Page DH, El-Hosseiny F, Winkler K (1971) Nature 229:252. doi: 10.1038/229252a0 CrossRefGoogle Scholar
  12. 12.
    Ehrnrooth EML, Kolseth P (1984) Wood Fiber Sci 16(4):549Google Scholar
  13. 13.
    Page DH, El-Hossiny F, Winkler K, Lancaster APS (1970) Tappi J 60(4):114Google Scholar
  14. 14.
    Mark RE (2002) Handbook of physical testing of paper II, 2nd edn. Marcel Dekker Inc., New YorkGoogle Scholar
  15. 15.
    Mark RE (1967) Cell wall mechanics of tracheids, Yale UniversityGoogle Scholar
  16. 16.
    Mcmillin CW (1974) Sven Papperstidn 77(9):319Google Scholar
  17. 17.
    Kolseth P, De R (1978) In: General constitutive relations for wood and wood-based materials, Syracuse University, pp 57–59Google Scholar
  18. 18.
    Nato T, Usuda M, Kadoya T (1983) Proc 1983 Int. Paper Physics Conf. Atlanta, TAPPI Press, Atlanta, pp 197–201Google Scholar
  19. 19.
    Faure JP, Lariviere JP, Bacon C, Pouyet J (1997) Exp Mech 37:344. doi: 10.1007/BF02317429 CrossRefGoogle Scholar
  20. 20.
    Naito T, Usuda M, Kadoya T (1980) Tappi J 63:115Google Scholar
  21. 21.
    Hartler N, Nyren J (1970) Tappi J 73(5):820Google Scholar
  22. 22.
    Scallan AM, Tigerström AC (1992) J Pulp Pap Sci 18(5):J188Google Scholar
  23. 23.
    Dunford JA, Wild PM (2002) J Pulp Pap Sci 28:136Google Scholar
  24. 24.
    Chhabra N, Spelt JK, Yip CM, Kortschot MT (2005) J Pulp Pap Sci 31:52Google Scholar
  25. 25.
    Scallan AM, Tigerstrom AC (1992) J Pulp Pap Sci 18:188Google Scholar
  26. 26.
    Yan D, Li K (2007) J Mater Sci. doi: 10.1007/s10853-007-2085-9
  27. 27.
    Yan D, Li K, Zhou Y (2008) Tappi J 91:25Google Scholar
  28. 28.
    Ebeling K (1976) In: Bolam F (ed) Technical division. BPBIF, London, pp 304–335Google Scholar
  29. 29.
    Nesbakk T, Helle T (2002) Proceeding of 88th annual meeting of pulp and paper technical association of Canada, p 113Google Scholar
  30. 30.
    Gao Y, Li K, Wang Z (2007) Pulp Pap Can 108(1):44Google Scholar
  31. 31.
    Gere JM, Timoshenko SP (1990) Mechanics of materials, PWS-KENT, USAGoogle Scholar
  32. 32.
    Abramoff MD, Magelhaes PJ, Ram SJ (2004) Biophotonics Int 11(7):36Google Scholar
  33. 33.
    Harlick RM, Linda GS (1992) Computer and robot vision. Addison-WesleyGoogle Scholar
  34. 34.
    Li K, Tan X, Yan D (2006) Surf Interface Anal 38(1):1328. doi: 10.1002/sia.2454 CrossRefGoogle Scholar
  35. 35.
    Cousins WJ (1976) Wood Fiber Sci 10:9Google Scholar
  36. 36.
    Nyren J (1971) Pulp Pap Can 72(10):T321Google Scholar
  37. 37.
    Wild P, Omholt I, Steinke D, Schuetze A (2005) J Pulp Pap Sci 31:116Google Scholar
  38. 38.
    Lowe R, Ragauskas A, Page DH (2005) In: I’Anson SJ (ed) Advances in paper science and technology, Proc 13th fundamental research symposium, FRC Manchester, p 921Google Scholar
  39. 39.
    Da Silva EC (1983) In: Tappi proceedings 1983 International paper physics conference, p 13Google Scholar
  40. 40.
    Lossada AA (1998) Paperi ja Puu 80:257Google Scholar
  41. 41.
    Paavilainen L (1993) Paperi ja Puu 75(9):689Google Scholar
  42. 42.
    Lawryshyn YA, Kuhn DCS (1996) J Pulp Pap Sci 22(1):423Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Limerick Pulp and Paper Research and Education CentreUniversity of New BrunswickFrederictonCanada

Personalised recommendations