Skip to main content
Log in

Effects of lanthanum modification on dielectric properties of Pb(Zr0.90,Ti0.10)O3 ceramics: enhanced antiferroelectric stability

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lanthanum modified lead zirconate titanate ceramics with lanthanum content changing from 2 to 6 at% La and a Zr/Ti ratio of 90/10 (PLZT x/90/10) have been analyzed by using X-ray diffraction, dielectric response, differential scanning calorimetry, and ferroelectric hysteresis. An antiferroelectric state was found to be stabilized, whereas the long-range ferroelectric state was disrupted by lanthanum substitution on the lead sites. A ferroelectric state is shown to be stable over an antiferroelectric state for low lanthanum contents in a wide temperature range, where both phases coexist. With the increase of the lanthanum concentration, the long-range coherency of the ferroelectric state is suppressed, i.e., the temperature range of the ferroelectric state stability decreased, disappearing for > 3 at% La.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaffe B (1961) Proc IRE 49:1264

    Article  Google Scholar 

  2. Pan W, Zhang Q, Bhalla A, Cross LE (1989) J Am Ceram Soc 72:571. doi:https://doi.org/10.1111/j.1151-2916.1989.tb06177.x

    Article  CAS  Google Scholar 

  3. Kim IW, Lee DS, Kang SH, Ahn ChW (2003) Thin Solid Films 441:115. doi:https://doi.org/10.1016/S0040-6090(03)00909-X

    Article  CAS  Google Scholar 

  4. Burn I (1971) Bull Am Ceram Soc 50:501

    CAS  Google Scholar 

  5. Puchmark C, Jiansirisomboon S, Rujijanagul G, Tunkasiri T (2004) Curr Appl Phys 4:179. doi:https://doi.org/10.1016/j.cap.2003.11.003

    Article  Google Scholar 

  6. Biggers JV, Schulze WA (1974) Bull Am Ceram Soc 53:809

    CAS  Google Scholar 

  7. Ishchuk VM, Baumer VN, Sobolev VL (2005) J Phys Condens Matter 17:L177. doi:https://doi.org/10.1088/0953-8984/17/19/L01

    Article  CAS  Google Scholar 

  8. Zhou L, Lupascu DC, Zimmermann A, Zhang Y (2005) J Appl Phys 97:124106. doi:https://doi.org/10.1063/1.1946906

    Article  Google Scholar 

  9. Ranjan R, Pandey D (2001) J Phys Condens Matter 13:4239. doi:https://doi.org/10.1088/0953-8984/13/19/305

    Article  CAS  Google Scholar 

  10. Pokharel BP, Pandey D (2000) J Appl Phys 88:5364. doi:https://doi.org/10.1063/1.1317241

    Article  CAS  Google Scholar 

  11. Xu Y, Singh RN (2000) J Appl Phys 88:7249. doi:https://doi.org/10.1063/1.1325380

    Article  Google Scholar 

  12. Bharadwaja SSN, Krupanidhi SB (2001) J Appl Phys 89:4541. doi:https://doi.org/10.1063/1.1331659

    Article  CAS  Google Scholar 

  13. Xu Y (1991) Ferroelectric materials and their applications. Elsevier Science Publishers BV, The Netherlands

    Google Scholar 

  14. Dai X, DiGiovanni A, Viehland D (1993) J Appl Phys 74:3399. doi:https://doi.org/10.1063/1.354567

    Article  CAS  Google Scholar 

  15. Thomas NW (1990) J Phys Chem Solids 51:1419. doi:https://doi.org/10.1016/0022-3697(90)90025-B

    Article  CAS  Google Scholar 

  16. Kong LB, Ma J (2002) Mater Lett 56:30. doi:https://doi.org/10.1016/S0167-577X(02)00412-3

    Article  CAS  Google Scholar 

  17. Landolt-Bornstein (1981) Numerical data and functional relationships in science and technology, vol 16. Springer-Verlag, Berlin, Heidelberg, New York

Download references

Acknowledgements

The authors wish to thank the Third World Academy of Sciences (RG/PHYS/LA No. 99-050, No. 02-225 and No. 05-043), the FAPESP Brazilian agency (Pro. No. 06/60013-5) for financial support and the ICTP (Trieste-Italy) for financial support of Latin-American Network of Ferroelectric Materials (NET-43). Dr. Aimé Peláiz-Barranco wishes to thank the Royal Society (Ref.: 2007/R1). MSc. Garcia-Zaldívar wishes to thanks the Red de Macrouniversidades/2007. Special thanks to R. de Lahaye for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peláiz-Barranco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peláiz-Barranco, A., Guerra, J.D.S., García-Zaldívar, O. et al. Effects of lanthanum modification on dielectric properties of Pb(Zr0.90,Ti0.10)O3 ceramics: enhanced antiferroelectric stability. J Mater Sci 43, 6087–6093 (2008). https://doi.org/10.1007/s10853-008-2951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2951-0

Keywords

Navigation