Skip to main content
Log in

Abnormal Hall–Petch behavior in nanocrystalline MgO ceramic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pure and dense nanocrystalline MgO with grain size ranging between 25 and 500 nm were prepared by hot-pressing. Vickers microhardness was found to increase with decrease in the grain size down to 130 nm, following the Hall–Petch relation. Further decrease in the grain size was followed by continuous decrease in microhardness. A composite model was used to describe the microhardness behavior in terms of plastic yield of the nanocrystalline grains accompanied by strain accommodation and nanocracking at the grain boundaries (gb’s). Good agreement between the experimental and the calculated values indicates that gb’s may have significant effect on strengthening and ductility of nanocrystalline-MgO ceramics in the nanometer size range. Critical grain size exists below which limited plastic deformation within the grains and nanocracking at gb’s enhance the brittleness of the ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morgan PED, Scala E (1965) In: Kuczynski GC, Hooton NA, Gibbon CF (eds) Sintering and related phenomena. Breach Sci Pub, NY

  2. Pampush R (1979) Ceramurgia Int 5:76

    Article  Google Scholar 

  3. Itatani K, Nomura M, Kishioka A, Kinoshita M (1986) J Mater Sci 21:1429. doi:https://doi.org/10.1007/BF00553284

    Article  CAS  Google Scholar 

  4. Itatani K, Yasuda R, Howell FS, Kishioka A (1997) J Mater Sci 32:2977. doi:https://doi.org/10.1023/A:1018649222749

    Article  CAS  Google Scholar 

  5. Vieira JM, Brook RJ (1984) J Am Ceram Soc 67:450

    Article  CAS  Google Scholar 

  6. Pampush R, Tomaszewski H, Haberko K (1975) Ceramurgia Int 1:81

    Article  Google Scholar 

  7. Wilshire B (1995) Br Ceram Trans 94:57

    CAS  Google Scholar 

  8. Ehre D, Gutmanas EY, Chaim R (2005) J Eur Ceram Soc 25:3579

    Article  CAS  Google Scholar 

  9. Chaim R, Shen Z, Nygren M (2004) J Mater Res 19:2527

    Article  CAS  Google Scholar 

  10. Rice RW, Wu CC, Borchelt F (1994) J Am Ceram Soc 77:2539

    Article  CAS  Google Scholar 

  11. Majumdar BS, Burns SJ (1987) J Mater Sci 22:1157. doi:https://doi.org/10.1007/BF01233104

    Article  CAS  Google Scholar 

  12. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scripta Metall 23:1679

    Article  CAS  Google Scholar 

  13. Jang JSC, Koch CC (1990) Scripta Metall Mater 24:1599

    Article  CAS  Google Scholar 

  14. Lu K, Wei WD, Wang JT (1990) Scripta Metall Mater 24:2319

    Article  CAS  Google Scholar 

  15. Gerstman VY, Hoffmann M, Gleiter H, Birringer R (1994) Acta Mater 42:3539

    Article  Google Scholar 

  16. Nieh TG, Wadsworth J (1991) Scripta Metall Mater 25:955

    Article  CAS  Google Scholar 

  17. Lian J, Baudelet B (1993) Nanostruct Mater 2:415

    Article  CAS  Google Scholar 

  18. Wang N, Wang Z, Aust KT, Erb U (1995) Acta Metall Mater 43:519

    Article  CAS  Google Scholar 

  19. Masumura RA, Hazzeldine PM, Pande CS (1998) Acta Mater 46:4527

    Article  CAS  Google Scholar 

  20. Song HW, Guo SR, Hu ZQ (1999) Nanostruct Mater 11:203

    Article  CAS  Google Scholar 

  21. Zaichenko SG, Glezer AM (1999) Interface Sci 7:57

    Article  Google Scholar 

  22. Singh RN, Coble RL (1974) J Appl Phys 45:981

    Article  CAS  Google Scholar 

  23. Auten TA, Radcliffe SV, Gordon RB (1976) J Am Ceram Soc 59:40

    Article  CAS  Google Scholar 

  24. Bahr DF, Kramer DE, Gerberich WW (1998) Acta Mater 46:3605

    Article  CAS  Google Scholar 

  25. Gaillard Y, Tromas C, Woirgard J (2004) Acta Mater 54:1409

    Article  CAS  Google Scholar 

  26. Chattopadhyay PP, Pabi SK, Manna I (2001) Mater Chem Phys 68:80

    Article  CAS  Google Scholar 

  27. Kennard FL, Bradt RC, Stubican VS (1976) J Am Ceram Soc 59:160

    Article  CAS  Google Scholar 

  28. Loubet JL, Georges JM, Marcheshini O, Meille G (1984) J Tribol 106:43

    Article  CAS  Google Scholar 

  29. Higashida K, Narita N, Onodera R, Minato S, Okazaki S (1997) Mater Sci Eng A 237:72

    Article  Google Scholar 

  30. Wolff U, Pryds N, Johnson E, Wert JA (2004) Acta Mater 52:1989

    Article  CAS  Google Scholar 

  31. Baricco M, Castellero A, Di Chio M et al (2007) J Alloys Compd 434–435:183

    Article  CAS  Google Scholar 

  32. Wang HL, Lin CH, Hon MH (1997) Thin Solid Films 310:260

    Article  CAS  Google Scholar 

  33. Li Q, Yu YH, Bhatia CS, Marks LD et al (2000) J Vac Sci Technol A 18:2333

    Article  CAS  Google Scholar 

  34. Yeheskel O, Chaim R, Shen Z, Nygren M (2005) J Mater Res 20:719

    Article  CAS  Google Scholar 

  35. Hammond BL, Armstrong RW (1988) Phil Mag Lett 57:41

    Article  CAS  Google Scholar 

  36. Sangwal K, Gorostiza P, Servat J, Sanz F (1999) J Mater Res 14:3973

    Article  CAS  Google Scholar 

  37. Bush MB (1993) Mater Sci Eng A 161:127

    Article  Google Scholar 

  38. Chaim R (1997) J Mater Res 12:1828

    Article  CAS  Google Scholar 

  39. Cook RF, Pharr GM (1990) J Am Ceram Soc 73:787

    Article  CAS  Google Scholar 

  40. Larsson PL, Giannakopoulos AE (1998) Mater Sci Eng A 254:268

    Article  Google Scholar 

  41. McColm IJ (1990) Ceramic hardness. Plenum, New York

    Book  Google Scholar 

  42. Roberts SG (1988) Phil Mag A 58:347

    Article  CAS  Google Scholar 

  43. Cook RF, Liniger EG (1992) J Mater Sci 27:4751. doi:https://doi.org/10.1007/BF01166017

    Article  CAS  Google Scholar 

  44. Rice RW (1971) In: Kriegel WW, Palmour H III (eds) Materials science research. Plenum Press, NY

  45. Zhang J, Sakai M (2004) Mater Sci Eng A 381:62

    Article  CAS  Google Scholar 

  46. Wang N, Palumbo G, Wang Z, Erb U, Aust KT (1993) Scripta Metall Mater 28:253

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The support of the Israel Ministry of Science through the grant no. 1090-1-00 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachman Chaim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehre, D., Chaim, R. Abnormal Hall–Petch behavior in nanocrystalline MgO ceramic. J Mater Sci 43, 6139–6143 (2008). https://doi.org/10.1007/s10853-008-2936-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2936-z

Keywords

Navigation