Skip to main content

Advertisement

Log in

Y2O3 and Nd2O3 co-stabilized ZrO2-WC composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461

    Article  CAS  Google Scholar 

  2. Bonny K, De Baets P, Vleugels J, Salehi A, Van der Biest O, Lauwers B et al, J Mat Proc Tech (in press)

  3. Lauwers B, Brans K, Liu W, Vleugels J, Salehi S, Vanmeensel K (2008) CIRP Ann Manu Tech 57:191. doi:https://doi.org/10.1016/j.cirp.2008.03.089

    Article  Google Scholar 

  4. Salehi S, Van der Biest O, Vleugels J (2006) J Eur Ceram Soc 26:3173. doi:https://doi.org/10.1016/j.jeurceramsoc.2005.10.010

    Article  CAS  Google Scholar 

  5. Salehi S, Van der Biest O, Brans K, Vleugels J (2008) J Am Ceram Soc (submitted)

  6. Vleugels J, Van Der Biest O (1999) J Am Ceram Soc 82:2717

    Article  CAS  Google Scholar 

  7. Basu B, Vleugels J, Van der Biest O (2005) J Eur Ceram Soc 25:3629. doi:https://doi.org/10.1016/j.jeurceramsoc.2004.09.017

    Article  CAS  Google Scholar 

  8. Jiang D, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:1247. doi:https://doi.org/10.1016/j.jeurceramsoc.2006.05.028

    Article  CAS  Google Scholar 

  9. Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:3269. doi:https://doi.org/10.1016/j.jeurceramsoc.2006.11.079

    Article  CAS  Google Scholar 

  10. Anné G, Put S, Vanmeensel K, Jiang D, Vleugels J, Van der Biest O (2005) J Eur Ceram Soc 25:55. doi:https://doi.org/10.1016/j.jeurceramsoc.2004.01.015

    Article  Google Scholar 

  11. Lawson S (1995) J Eur Ceram Soc 15:485. doi:https://doi.org/10.1016/0955-2219(95)00035-S

    Article  CAS  Google Scholar 

  12. Chevalier J, Cales B, Drouin J (1999) J Am Ceram Soc 82:2150

    Article  CAS  Google Scholar 

  13. Salehi S, Vanmeensel K, Van der Biest O, Vleugels J (2008) J Am Ceram Soc (submitted)

  14. Yuan ZX, Vleugels J, Van der Biest O (2000) J Mater Sci Lett 19:359. doi:https://doi.org/10.1023/A:1006714032131

    Article  CAS  Google Scholar 

  15. Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Acta Mater 53:4379. doi:https://doi.org/10.1016/j.actamat.2005.05.042

    Article  CAS  Google Scholar 

  16. Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119. doi:https://doi.org/10.1111/j.1151-2916.1984.tb19614.x

    CAS  Google Scholar 

  17. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533. doi:https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  18. ASTM Standard E 1876-99 (1994) ASTM Annual Book of Standards, Philadelphia, PA

  19. Moskała N, Pyda W (2006) J Eur Ceram Soc 26:3845. doi:https://doi.org/10.1016/j.jeurceramsoc.2005.12.012

    Article  Google Scholar 

  20. Wang J, Stevens R (1989) J Mater Sci 24:3424

    Google Scholar 

  21. Awaji H, Choi SM, Yagi E (2002) Mech Mater 34:411. doi:https://doi.org/10.1016/S0167-6636(02)00129-1

    Article  Google Scholar 

  22. Evans AG, Faber KT (1981) J Am Ceram Soc 64:394. doi:https://doi.org/10.1111/j.1151-2916.1981.tb09877.x

    Article  Google Scholar 

  23. Shannon RD (1976) Acta Crystallogr 32:751. doi:https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  24. Rey JFQ, Muccillo ENS (2004) J Eur Ceram Soc 24:1287. doi:https://doi.org/10.1016/S0955-2219(03)00498-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Salehi thanks the Research Council of K.U.Leuven for a doctoral scholarship (DB/07/012). This work was supported by the Commission of the European Communities within the 6th Framework Program under project No. STRP 505541–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef Vleugels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi, S., Van der Biest, O. & Vleugels, J. Y2O3 and Nd2O3 co-stabilized ZrO2-WC composites. J Mater Sci 43, 5784–5789 (2008). https://doi.org/10.1007/s10853-008-2899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2899-0

Keywords

Navigation