Seed-assisted sol–gel synthesis and characterization of nanoparticular V2O5/anatase

  • Andreas J. Kruse
  • Steffen B. Kristensen
  • Anders Riisager
  • Søren B. Rasmussen
  • Rasmus Fehrmann


Nanoparticular supported vanadia materials with crystalline anatase support with a narrow size distribution around 12 nm have been synthesized by a new facile sol–gel, co-precipitation method using decomposable ammonium chloride seed crystals. The materials have been characterized by means of X-ray powder diffraction, transmission electron microscopy and nitrogen physisorption. The synthesized high-surface area anatase particles allowed a loading of up to 15 wt.% vanadia without exceeding monolayer coverage of V2O5 in contrast to typical analogous industrial catalysts which only can accommodate 3–5 wt.% vanadia. These materials are promising candidates for improved catalysts for, e.g., oxidation reactions and selective catalytic reduction of NO X in flue gases.


Selective Catalytic Reduction Vanadium Oxide Selective Catalytic Reduction Catalyst Anatase Particle Composite Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Center for Sustainable and Green Chemistry is sponsored by the Danish National Research Foundation, and the work was supported by the Danish Research Council for Technology and Production Sciences, Elkraft Systems (PSO FU5201), the USACH Program and the Communidad Autónoma de Madrid (CAM-GR/AMB/0751/2004). We thank K. Egeblad and S.K. Klitgaard (Technical University of Denmark) for the TEM recordings.


  1. 1.
    Weckhuysen BM, Van Der Voort P, Catana G (eds) (2000) Spetroscopy of transition metal ions on surfaces. Leuven University Press, LeuvenGoogle Scholar
  2. 2.
    Gao X, Wachs IE (2002) Top Catal 18:243. doi: 10.1023/A:1013842722877 CrossRefGoogle Scholar
  3. 3.
    Weckhuysen BM, Keller DE (2003) Catal Today 78:25. doi: 10.1016/S0920-5861(02)00323-1 CrossRefGoogle Scholar
  4. 4.
    Parvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233. doi: 10.1016/S0920-5861(98)00399-X CrossRefGoogle Scholar
  5. 5.
    Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal 18:1. doi: 10.1016/S0926-3373(98)00040-X CrossRefGoogle Scholar
  6. 6.
    Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852. doi: 10.1002/anie.200500766 CrossRefGoogle Scholar
  7. 7.
    Wang X, Landau MV, Rotter H, Vradman L, Wolfson A, Erenburg A (2004) J Catal 222:565. doi: 10.1016/j.jcat.2003.12.003 CrossRefGoogle Scholar
  8. 8.
    Yu L, Zhang X (2004) Mater Chem Phys 87:168. doi: 10.1016/j.matchemphys.2004.05.022 CrossRefGoogle Scholar
  9. 9.
    Mohamed MM, Bayoumy WA, Khairy M, Mousa MA (2006) Microporous Mesoporous Mater 97:66. doi: 10.1016/j.micromeso.2006.07.028 CrossRefGoogle Scholar
  10. 10.
    Liu G, Wang K, Zhou Z (2006) Mater Sci Forum 510–511:86CrossRefGoogle Scholar
  11. 11.
    Stark WJ, Wegner K, Pratsinis SE, Baiker A (2001) J Catal 197:182. doi: 10.1006/jcat.2000.3073 CrossRefGoogle Scholar
  12. 12.
    Schimmoeller B, Schulz H, Pratsinis SE, Bareiss A, Reitzmann A, Kraushaar-Czarnetzki B (2006) J Catal 243:82. doi: 10.1016/j.jcat.2006.07.007 CrossRefGoogle Scholar
  13. 13.
    Hari-Bala, Zhao J, Jiang Y, Ding X, Tian Y, Yu K, Wang Z (2005) Mater Lett 59:1937Google Scholar
  14. 14.
    Hari-Bala, Guo Y, Zhao X, Zhao J, Fu W, Ding X, Jiang Y, Yu K, Lv X, Wang Z (2006) Mater Lett 60:494 doi: 10.1016/j.matlet.2005.09.030
  15. 15.
    Lippens BC, de Boer JH (1965) J Catal 4:319. doi: 10.1016/0021-9517(65)90307-6 CrossRefGoogle Scholar
  16. 16.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids—principles, methodology and applications. Academic Press, LondonGoogle Scholar
  17. 17.
    Groen JC, Pérez-Ramírez J (2004) Appl Catal A 268:121. doi: 10.1016/j.apcata.2004.03.031 CrossRefGoogle Scholar
  18. 18.
    Mellqvist J, Rosén A (1996) J Quant Spectrosc Radiat Transfer 56:87Google Scholar
  19. 19.
    Hausinger G, Schmelz H, Knözinger H (1988) Appl Catal 39:267. doi: 10.1016/S0166-9834(00)80954-9 CrossRefGoogle Scholar
  20. 20.
    Grzybowska-Świerkosz B (1997) Appl Catal A 157:263. doi: 10.1016/S0926-860X(97)00015-X CrossRefGoogle Scholar
  21. 21.
    Lide DR (ed) (2007) CRC handbook of chemistry and physics, 87th edn. Taylor and Francis, Boca Raton, FLGoogle Scholar
  22. 22.
    Kamata H, Takahashi K, Odenbrand CUI (1999) J Mol Catal A 139:189. doi: 10.1016/S1381-1169(98)00177-0 CrossRefGoogle Scholar
  23. 23.
    Dmitri A, Kiwi-Minsker L, Zaikovskii V, Renken A (2000) J Catal 193:145. doi: 10.1006/jcat.2000.2872 CrossRefGoogle Scholar
  24. 24.
    Yates M, Martín JA, Martín-Luengo JA, Suarez S, Blanco J (2005) Catal Today 107–108:120. doi: 10.1016/j.cattod.2005.07.015 CrossRefGoogle Scholar
  25. 25.
    Kustov AL, Kustova MY, Fehrmann R, Simonsen P (2005) Appl Catal B 58:97. doi: 10.1016/j.apcatb.2004.11.016 CrossRefGoogle Scholar
  26. 26.
    Zheng Y, Jensen AD, Johnsson JE (2005) Appl Catal B 60:253. doi: 10.1016/j.apcatb.2005.03.010 CrossRefGoogle Scholar
  27. 27.
    Due-Hansen J, Kustov AL, Rasmussen SB, Fehrmann R, Christensen CH (2006) Appl Catal B 66:161. doi: 10.1016/j.apcatb.2006.03.006 CrossRefGoogle Scholar
  28. 28.
    Due-Hansen J, Boghosian S, Kustov AL, Fristrup P, Tsilomelekis G, Ståhl K et al (2007) J Catal 251:459. doi: 10.1016/j.jcat.2007.07.016 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andreas J. Kruse
    • 1
  • Steffen B. Kristensen
    • 1
  • Anders Riisager
    • 1
  • Søren B. Rasmussen
    • 2
  • Rasmus Fehrmann
    • 1
  1. 1.Department of Chemistry and Center for Sustainable and Green ChemistryTechnical University of DenmarkLyngbyDenmark
  2. 2.Instituto de Catálisis y Petroleoquimica (ICP)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain

Personalised recommendations