Journal of Materials Science

, Volume 43, Issue 19, pp 6513–6526 | Cite as

Combustion synthesis/quasi-isostatic pressing of TiC–NiTi cermets: processing and mechanical response



TiC–NiTi composites were produced by a technique combining self-propagating high-temperature synthesis (SHS) of elemental powders of Ni, Ti, and C with densification by quasi-isostatic pressing (QIP). In order to create a one-step synthesis/densification process, the Ti + Ni + C reactant material was surrounded in a bed of graphite and alumina particulate before initiation of the combustion reaction. The sample was ignited within the particulate and subjected to a uniaxial load immediately after passage of the combustion wave. The constitutive response, composition and resulting structures of the composites with varying volume fractions of NiTi are characterized. Powder mixtures prepared anticipating the formation of stoichiometric TiC result in the formation of composites with a eutectic matrix of Ni3Ti and NiTi. This titanium impoverishment of the matrix is consistent with the formation of nonstoichiometric TiC x during the combustion reaction. The Ni3Ti phase can be suppressed by anticipating the formation of TiC0.7 and adjusting the chemical content of the reactant mixture to include additional titanium. These cermets combine the high hardness of the ceramic phase with the possible shape memory and superelastic effects of NiTi.


Titanium Carbide Combustion Wave Ni3Ti Ni3Ti Phase NiTi Matrix 



This research was supported by the U.S. Army Research Office MURI Program on Ultradynamic Performance Materials under contracts DAAH04-95-1-0236 and DAAH04-96-1-0376. The help and guidance provided by Dr. J. C. LaSalvia is greatly acknowledged. The TEM was performed in collaboration with Dr. T. Radetic at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720. Mr. Y. Seki provided the great help with the preparation of the manuscript. We thank the National Center for Electron Microscopy, Lawrence Berkeley Laboratory, for the use of their facilities.


  1. 1.
    Goldstein D (1977) US Patent 4,030,427Google Scholar
  2. 2.
    Mari D, Dunand DC (1995) Metall Mater Trans A 26A:2833. doi: 10.1007/BF02669642 CrossRefGoogle Scholar
  3. 3.
    Dunand DC, Mari D, Bourke MAM, Roberts JA (1996) Metall Mater Trans A 27A:2820. doi: 10.1007/BF02652374 CrossRefGoogle Scholar
  4. 4.
    Fukami-Ushiro KL, Dunand DC (1996) Metall Mater Trans A 27A:183. doi: 10.1007/BF02647758 CrossRefGoogle Scholar
  5. 5.
    Fukami-Ushiro KL, Dunand DC (1996) Metall Mater Trans A 27A:193. doi: 10.1007/BF02647759 CrossRefGoogle Scholar
  6. 6.
    Hoke DA, Meyers MA, Meyer LW, Gray GT III (1992) Metall Trans A 23A:77Google Scholar
  7. 7.
    LaSalvia JC, Meyer LW, Meyers MA (1992) J Am Ceram Soc 75:592. doi: 10.1111/j.1151-2916.1992.tb07848.x CrossRefGoogle Scholar
  8. 8.
    Olevsky E, Kristofetz E, Uzoigwe C, Meyers M (1997) Advances in Powder Metallugy and Particulate Materials, MPIF, 3-43Google Scholar
  9. 9.
    Olevsky EA, Kristofetz ER, Meyers MA (1998) Int J Comb Synth 7:517Google Scholar
  10. 10.
    Merzhanov AG, Borovinskaya IP (1972) Dokl Akad Nauk SSSR 204:366Google Scholar
  11. 11.
    Anselmi-Tamburini U, Munir ZA (1989) J Appl Phys 66:5039CrossRefGoogle Scholar
  12. 12.
    Yi HC, Moore JJ (1990) J Mater Sci 25:1159. doi: 10.1007/BF00585421 Google Scholar
  13. 13.
    LaSalvia JC, Meyers MA (1995) Int J SHS 4:43Google Scholar
  14. 14.
    LaSalvia JC, Meyers MA, Kim DK (1994) J Mater Synth Process 2:255Google Scholar
  15. 15.
    LaSalvia JC, Kim DK, Meyers MA (1996) Mater Sci Eng A 206:71. doi: 10.1016/0921-5093(95)09994-8 CrossRefGoogle Scholar
  16. 16.
    Hoke DA, Meyers MA (1994) J Am Ceram Soc 78:275. doi: 10.1111/j.1151-2916.1995.tb08797.x CrossRefGoogle Scholar
  17. 17.
    Skorohod V, Olevsky E, Shtern M (1993) Powder Metall Met Ceram N1(361):22Google Scholar
  18. 18.
    Skorohod V, Olevsky E, Shtern M (1993) Powder Metall Met Ceram N2(362):16Google Scholar
  19. 19.
    Olevsky E, Dudek HJ, Kaysser WA (1996) Acta Metall Mater 44:707Google Scholar
  20. 20.
    Olevsky EA, Strutt ER, Meyers MA (1998) Advances in Powder Metallurgy and Particulate Materials, MPIF, 3-93Google Scholar
  21. 21.
    Olevsky EA, Strutt ER, Meyers MA (2001) Scr Mater 44:1139. doi: 10.1016/S1359-6462(01)00661-3 CrossRefGoogle Scholar
  22. 22.
    Storms EK (1967) The refractory carbides. Academic Press, Inc., New York and LondonGoogle Scholar
  23. 23.
    Merzhanov AG, Khaikin BI (1988) Prog Energy Combust Sci 14(1):98. doi: 10.1016/0360-1285(88)90006-8 CrossRefGoogle Scholar
  24. 24.
    Raman RV, Rele SV, Poland S, LaSalvia JC, Meyers MA, Niiler AR (1995) JOM 47:23Google Scholar
  25. 25.
    Fischmeister HF, Arzt E (1983) Powder Metall 26:82Google Scholar
  26. 26.
    Helle AS, Easterling KE, Ashby MF (1985) Acta Metall 33:2163. doi: 10.1016/0001-6160(85)90177-4 CrossRefGoogle Scholar
  27. 27.
    Torre C (1948) Berg-Huttenmann Monatsh Montan Hochschule Leoben 93:62Google Scholar
  28. 28.
    Carroll MM, Holt AC (1972) J Appl Phys 43:1626. doi: 10.1063/1.1661372 CrossRefGoogle Scholar
  29. 29.
    Massalski TB (1990) Binary alloy phase diagrams. ASM International, Materials Park, OhioGoogle Scholar
  30. 30.
    Poletika TM, Kul’kov SN, Panin VE (1983) Porosh Metall 7(247):54Google Scholar
  31. 31.
    Kul’kov SN, Poletiks TM, Chukhlomin AY, Panin VE (1984) Porosh Metall 8(260):88Google Scholar
  32. 32.
    Cullity BD (1978) Elements of x-ray diffraction. Addison-Wesley Publishing Company, PhilippinesGoogle Scholar
  33. 33.
    Riva G, Vanelli M, Airoldi G (1995) Phys Status Solidi A Appl Res 148:363. doi: 10.1002/pssa.2211480204 CrossRefGoogle Scholar
  34. 34.
    Kosolapova TY (1990) Handbook of high temperature compounds: properties, production, applications. Hemisphere Publishing Corporation, New YorkGoogle Scholar
  35. 35.
    Paper 2: Combustion synthesis/quasi-isostatic pressing of TiC0.7-NiTi cermets: microstructure and transformation characteristicsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Science and Engineering ProgramUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of Mechanical EngineeringSan Diego State UniversitySan DiegoUSA
  3. 3.Departments of Mechanical and Aerospace Engineering and NanoengineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations