Skip to main content
Log in

Microstructure and wear assessment of TIG surface alloying of CP-titanium with silicon

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tungsten Inert Gas (TIG) process has been employed to produce surface alloyed tracks on preplaced CP-Ti substrate with Si to improve wear resistance. Uniform alloyed tracks with hypo eutectic binary Ti–Si compositions have been achieved using preplaced layers with Si amounts of up to 40 at.%. Si content of the TIG alloyed tracks was found to be affected by the TIG heat input and Si amount of the preplaced layer. The microstructures of the surface alloyed tracks showed phases of primary α-Ti in dendrites and eutectic lamellas of α-Ti and Ti5Si3 within the interdendritic regions using optical and scanning electron microscopy, X-ray diffractometry, and energy dispersive spectroscopy. Finer dendrites were found at lower heat input. A maximum micro hardness value of 750 HV was found in the surface alloyed track, which is ~4 to 5 times of that of the substrate material (180 HV). Pin-on-disk wear tests exhibited the better performance of the surface alloyed tracks than the untreated material which is attributed to the presence of Ti5Si3 intermetallic compound in the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ASM handbook, vol 2-properties and selection: nonferrous alloys and special—purpose materials. ASM International (1990)

  2. Handbook ASM vol 18—friction, lubrication and wear technology. ASM International (1990)

  3. Budinski KG (1991) Wear 151:203. doi:https://doi.org/10.1016/0043-1648(91)90249-T

    Article  CAS  Google Scholar 

  4. Bi Q, Matthews A (2003) Surf Coat Technol 163–164:597. doi:https://doi.org/10.1016/S0257-8972(02)00630-8

    Google Scholar 

  5. Pfohl C, Rie KT (1999) Surf Coat Technol 116–119:911. doi:https://doi.org/10.1016/S0257-8972(99)00141-3

    Article  Google Scholar 

  6. Lifang X, Xinxin M, Yue S (2000) Wear 246(1–2):40. doi:https://doi.org/10.1016/S0043-1648(00)00444-0

    Google Scholar 

  7. Liang W, Zao XG (2001) Scr Mater 44:1049–1054. doi:https://doi.org/10.1016/S1359-6462(01)00675-3

    Article  CAS  Google Scholar 

  8. Euh K, Lee J, Lee S, Koo Y, Kim NJ (2001) Scr Mater 45:1–6. doi:https://doi.org/10.1016/S1359-6462(01)00981-2

    Article  CAS  Google Scholar 

  9. Oh J, Lee S (2004) Surf Coat Technol 179:340. doi:https://doi.org/10.1016/S0257-8972(03)00811-9

    Article  CAS  Google Scholar 

  10. Mridha S, Baker TN (1997) J Mater Process Technol 63:432

    Article  Google Scholar 

  11. Tiam YS, Chen CZ, Chen LX, Huo QH (2006) Mater Lett 60:109. doi:https://doi.org/10.1016/j.matlet.2005.07.082

    Article  Google Scholar 

  12. Dutta Majumdar J, Mordike BL, Manna I (2000) Wear 242:18. doi:https://doi.org/10.1016/S0043-1648(00)00363-X

    Article  Google Scholar 

  13. Dutta Majumdar J, Weisheit A, Mordike BL, Manna I (1999) Mater Sci Eng A 266:123. doi:https://doi.org/10.1016/S0921-5093(99)00045-3

    Article  Google Scholar 

  14. Wenbin D, Haiyan J, Xiaoqin Z, Dehui L, Shoushan Y (2007) J Alloy Compd 429:233. doi:https://doi.org/10.1016/j.jallcom.2006.03.083

    Article  CAS  Google Scholar 

  15. Baytoz S, Uttran M, Mustafa M (2005) Appl Surf Sci 252:1313. doi:https://doi.org/10.1016/j.apsusc.2005.02.088

    Article  Google Scholar 

  16. Mridha S (2005) J Mater Process Technol 168:471–477. doi:https://doi.org/10.1016/j.jmatprotec.2005.02.247

    Article  CAS  Google Scholar 

  17. Mridha S, Ong HS, Poh LS, Cheang P (2001) J Mater Process Technol 113:516. doi:https://doi.org/10.1016/S0924-0136(01)00609-4

    Article  CAS  Google Scholar 

  18. Anthony TR, Cline HE (1977) J Appl Phys 48(9):3888. doi:https://doi.org/10.1063/1.324260

    Article  CAS  Google Scholar 

  19. Chade T, Mazumder J (1983) Metall Trans 14B:181

    Article  Google Scholar 

  20. Easterling KE (1992) Introduction to the physical metallurgy welding. Butterworth-Heinemann, London

    Google Scholar 

  21. Flower HM, Swann PR, West DRF (1972) J Mater Sci 7:929. doi:https://doi.org/10.1007/BF00550440

    Article  CAS  Google Scholar 

  22. Kurz W, Fisher DJ (1984) Fundamentals of solidification. Trans Tech Pub., Netherlands, p 71

  23. Chumbley LS, Ohles MA, Fraser HL (1986) In: Froes FH (ed) Titanium rapid solidification technology. TMS-AIME, Warrendale, PA, p 211

    Google Scholar 

  24. Abboud JH, West DRF (1991) Surf Eng 7(2):159

    Article  CAS  Google Scholar 

  25. Massalski TB, Okamoto H, Subramanian PR, Pkacparzak L (1990) Binary alloy phase diagram. ASM International, Material Park, OH

    Google Scholar 

  26. Fasasi AY, Roy SK, Galerie A, Pons M, Caillet M (1992) Mater Lett 13:204

    Article  CAS  Google Scholar 

  27. Bumps ES, Kessler HD, Hansen M (1953) Trans ASM 45:1008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Kashani Bozorg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajbagheri, F.A., Kashani Bozorg, S.F. & Amadeh, A.A. Microstructure and wear assessment of TIG surface alloying of CP-titanium with silicon. J Mater Sci 43, 5720–5727 (2008). https://doi.org/10.1007/s10853-008-2890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2890-9

Keywords

Navigation