Skip to main content
Log in

The interaction of magnesium in hydration of C3S and CSH formation using 29Si MAS-NMR

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydration of tricalcium silicate in hydrothermal conditions in the presence of magnesium oxide has shown changes in the formation of CSH gel structure (Calcium silicate hydrates). The new CSH incorporates magnesium ions, brucite, but a weak presence of portlandite. The magnesium oxide would hinder the precipitation of portlandite. The characterization of CSH gel by 29Si MAS-NMR with various CaO/SiO2 ratios would point out that: (1) A dreierketten structure of the CSH for low CaO/SiO2 < 1, with some defects (Q3 defect and Q2v) in its structure is confirmed. Some magnesium ions are incorporated in the octahedral sites, in the interlayer space of the dreierketten pattern. (2) For the CSH gels with CaO/SiO2 ratios > 1, magnesium ions would be incorporated in the silicate chains of the CSH gel in a tetrahedral coordination. Although, the low MgO/CaO ratios of CSH gels indicate that the magnesium incorporation in CSH chain is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taylor HFW (1990) Cement chemistry. Academic Press, London

    Google Scholar 

  2. Masse S (1993) PhD: Synthèse Hydrothermal d’Hydrates de Silicate Tricalcique. Analyse Structurale en Phase Solide. Etude Comparative avec les Ciments Utilisés pour Chemiser les Puits de Pétrole, Université Pierre et Marie Curie Paris

  3. Flint EP, Wells LS (1934) J Res Natl Bur Stand 12:751

    Article  CAS  Google Scholar 

  4. Brunauer S, Kantro D, Copeland L (1958) J Am Chem Soc 80:761. doi:https://doi.org/10.1021/ja01537a001

    Article  CAS  Google Scholar 

  5. Greenberg SA, Chang TN (1965) J Phys Chem 69:182. doi:https://doi.org/10.1021/j100885a027

    Article  CAS  Google Scholar 

  6. Greenberg SA, Chang TN, Anderson E (1965) J Phys Chem 64:1151. doi:https://doi.org/10.1021/j100838a012

    Article  Google Scholar 

  7. Roller PS, Ewin JG (1940) J Am Chem Soc 62:461. doi:https://doi.org/10.1021/ja01860a001

    Article  CAS  Google Scholar 

  8. Taylor HFW (1950) J Chem Soc 726:3682. doi:https://doi.org/10.1039/JR9500003682

    Article  Google Scholar 

  9. Nonat A (2004) Cem Concr Res 34:1521. doi:https://doi.org/10.1016/j.cemconres.2004.04.035

    Article  CAS  Google Scholar 

  10. Richardson IG (2004) Cem Concr Res 34:1733. doi:https://doi.org/10.1016/j.cemconres.2004.05.034

    Article  CAS  Google Scholar 

  11. Cong X, Kirkpatrick R (1996) J Adv Cem Base Mater 3:144. doi:https://doi.org/10.1016/S1065-7355(96)90046-2

    Article  CAS  Google Scholar 

  12. Klur I (1996) PhD: Etude par RMN de la Structure des Silicates de Calcium Hydratés, Université Pierre et Marie Curie Paris

  13. Klur I, Pollet B, Virlet J, Nonat A (1998). In: Colombet P (ed) Nuclear magnetic resonance spectroscopy of cement-based materials. Springer, Berlin

  14. Grutzeck M, Benesi A, Fanning B (1989) J Am Ceram Soc 72:665. doi:https://doi.org/10.1111/j.1151-2916.1989.tb06192.x

    Article  CAS  Google Scholar 

  15. Rodger SA, Groves GW, Clayden NJ, Dobson CM (1988) J Am Ceram Soc 71:91. doi:https://doi.org/10.1111/j.1151-2916.1988.tb05823.x

    Article  CAS  Google Scholar 

  16. Fernandez L, Alonso C, Hidalgo A, Andrade C (2005) Adv Cem Res 17:9. doi:https://doi.org/10.1680/adcr.17.1.9.58392

    Article  CAS  Google Scholar 

  17. Pytel Z, Malolepszy J (1997). In: Justnes H (ed) Proc Int Congr Chem Cem 10th, Amarkai AB, Goeteborg

  18. Shrivastava OP, Komarneni S, Breval E (1991) Cem Concr Res 21:83. doi:https://doi.org/10.1016/0008-8846(91)90034-F

    Article  CAS  Google Scholar 

  19. Xu G, Lai Z, Qian G, Yang S, Zhou Q (2000) Guisuanyan Xuebao 28:100

    CAS  Google Scholar 

  20. Massiot D, Thiele H, Germanus A (1994) Bruker Rep 140:43

    Google Scholar 

  21. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley & Sons, Chichester

    Google Scholar 

  22. Mägi M, Lippmaa E, Samoson A, Engelhardt G, Grimmer AR (1984) J Phys Chem 88:1518. doi:https://doi.org/10.1021/j150652a015

    Article  Google Scholar 

  23. Brough AR, Dobson CM, Richardson IG, Groves GW (1994) J Am Ceram Soc 77:593. doi:https://doi.org/10.1111/j.1151-2916.1994.tb07034.x

    Article  CAS  Google Scholar 

  24. Cong X, Kirkpatrick RJ (1993) Cem Concr Res 23:1065. doi:https://doi.org/10.1016/0008-8846(93)90166-7

    Article  CAS  Google Scholar 

  25. Dobson CM, Goberdhan DGC, Ramsay JDF, Rodger SA (1988) J Mater Sci 23:4108. doi:https://doi.org/10.1007/BF01106844

    Article  CAS  Google Scholar 

  26. Noma H, Adachi Y, Yamada H, Nishino T, Matsuda Y, Yokoyama T (1998). In: Colombet P (ed) Nuclear magnetic resonance spectroscopy of cement-based materials. Springer, Berlin

  27. Ramanchandran VS, Feldman RF, Beaudoin JJ (1981) Concrete science. Heyden and Son Ltd., Philadelphia, PA

    Google Scholar 

  28. Taylor HFW (1986) J Am Ceram Soc 69:464. doi:https://doi.org/10.1111/j.1151-2916.1986.tb07446.x

    Article  CAS  Google Scholar 

  29. Stein HN, Stevels JM (1964) J Appl Chem 14:338

    Article  CAS  Google Scholar 

  30. Grutzeck MW, Kwan S, Thompson JL, Benesi A (1999) J Mater Sci Lett 18:217. doi:https://doi.org/10.1023/A:1006624215448

    Article  CAS  Google Scholar 

  31. Barnes JR, Clague ADH, Clayden NJ, Dobson CM, Hayes CJ, Groves GW et al (1985) J Mater Sci Lett 4:1293. doi:https://doi.org/10.1007/BF00723485

    Article  CAS  Google Scholar 

  32. Brunet F, Bertani P, Charpentier T, Virlet J, Nonat A (2004) J Phys Chem B 108:15494. doi:https://doi.org/10.1021/jp031174g

    Article  CAS  Google Scholar 

  33. Klur I, Jacquinot JF, Brunet F, Charpentier T, Virlet J, Schneider C et al (2000) J Phys Chem B 104:10162. doi:https://doi.org/10.1021/jp001342u

    Article  CAS  Google Scholar 

  34. Faucon P, Delaye JM, Virlet J (1996) J Solid State Chem 127:92. doi:https://doi.org/10.1006/jssc.1996.0361

    Article  CAS  Google Scholar 

  35. Faucon P, Jacquinot JF, Delaye JM, Virlet J (1997) Philos Mag B 75:769. doi:https://doi.org/10.1080/13642819708202353

    Article  CAS  Google Scholar 

  36. Skibsted J, Jakobsen HJ, Hall C (1995) J Chem Soc-Faraday Trans 91:4423. doi:https://doi.org/10.1039/ft9959104423

    Article  CAS  Google Scholar 

  37. Edwards CL, Alemany LB, Barron AR (2007) Ind Eng Chem Res 46:5122. doi:https://doi.org/10.1021/ie070220m

    Article  CAS  Google Scholar 

  38. Stephan D, Wistuba S (2006) J Eur Ceram Soc 26:141. doi:https://doi.org/10.1016/j.jeurceramsoc.2004.10.031

    Article  CAS  Google Scholar 

  39. Peterson VK, Hunter BA, Ray A (2004) J Am Ceram Soc 87:1625

    Article  CAS  Google Scholar 

  40. De La Torre AG, Bruque S, Campo J, Aranda MAG (2002) Cem Concr Res 32:1347. doi:https://doi.org/10.1016/S0008-8846(02)00796-2

    Article  Google Scholar 

  41. De La Torre AG, Bruque S, Aranda MAG (2001) J Appl Crystallogr 34:196. doi:https://doi.org/10.1107/S0021889801002485

    Article  Google Scholar 

  42. Mumme WG (1995) Neues Jahrb Mineral-Montash Hefte 4:145

    Google Scholar 

  43. Clayden NJ, Dobson CM, Groves GW, Rodger SA (1986). In: Secr (ed) Congr Int Quim Cimento 8th, Geral 8o CIQC, Rio de Janeiro

  44. Janes N, Oldfield E (1985) J Am Chem Soc 107:6769. doi:https://doi.org/10.1021/ja00310a004

    Article  CAS  Google Scholar 

  45. Dupree R, Smith ME (1988) J Chem Soc Chem Commun 22:1483. doi:https://doi.org/10.1039/C39880001483

    Article  Google Scholar 

  46. MacKenzie KJD, Meinhold RH (1994) J Mater Chem 4:1595. doi:https://doi.org/10.1039/jm9940401595

    Article  CAS  Google Scholar 

  47. Fiske PS, Stebbins JF (1994) Am Mineral 79:848

    CAS  Google Scholar 

  48. Yang H, Hazen RM, Downs RT, Finger LW (1997) Phys Chem Miner 24:510. doi:https://doi.org/10.1007/s002690050066

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the “Ministerio de Educación y Ciencia” and the C.I.C.Y.T of Spain for the funds provided, as well as to the DG-XII of the E.U: UNICORN Project (BRPR-CT97-0511). We also thank to Dr. C. Vernet (Lafarge Society) for the synthesis of C3S and to the Department of NMR. Spectroscopy (C.A.I) from the “Universidad Complutense de Madrid” for the testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Fernandez or C. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, L., Alonso, C., Andrade, C. et al. The interaction of magnesium in hydration of C3S and CSH formation using 29Si MAS-NMR. J Mater Sci 43, 5772–5783 (2008). https://doi.org/10.1007/s10853-008-2889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2889-2

Keywords

Navigation