Skip to main content
Log in

The gelation behaviors of the reactive blends of nylon1212 and functional elastomer

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Studies on the gelation behaviors of the reactive blends of nylon1212 and functional elastomer were carried out. The results show that the curves of the storage modulus(G′)–frequency (ω) exhibit a gel plateau in the low ω region, and the transition from liquid-like to solid-like viscoelastic behaviors emerges with the concentration of SEBS-g-MA increasing. There exist the gelation behaviors in the blending process similar to those of crosslinking polymer. Based on Winter’s method, the gel point of blends is determined to be, φg = 17.45 wt%, and the corresponding value of tanδ is 1.44. The gel index n calculated is 0.61 and the gel strength Sg is 1.08 × 104 Pa s0.61. However, the non-reactive blends of nylon1212 and elastomer have no emergence of gelation behaviors. The morphology analysis shows that the gel point for the reactive blends is a threshold of cocontinuous morphology, and morphology analysis can also be a method to determine the gel point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  2. Stockmayer WH (1943) J Chem Phys 11:45. doi:https://doi.org/10.1063/1.1723803

    Article  CAS  Google Scholar 

  3. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York and London

    Google Scholar 

  4. Stauffer D (1985) Introduction of percolation theory. Taylor and Francis, London

    Book  Google Scholar 

  5. Martin JE, Adolf D (1991) Annu Rev Phys Chem 42:311

    Article  CAS  Google Scholar 

  6. Winter HH, Chambon F (1986) J Rheol (NYNY) 30:367. doi:https://doi.org/10.1122/1.549853

    Article  CAS  Google Scholar 

  7. Lipshitz S, Macosko CW (1976) Polym Eng Sci 16:803

    Article  CAS  Google Scholar 

  8. Valles EM, Macosko CW (1976) Rubber Chemtech 49:1232

    Article  CAS  Google Scholar 

  9. Castro JM, Macosko CW, Perry SJ (1984) Polym Commun (Guildf) 25:82

    CAS  Google Scholar 

  10. Apicella A, Masi P, Nicolais L (1984) Rheol Acta 23:291. doi:https://doi.org/10.1007/BF01332194

    Article  CAS  Google Scholar 

  11. Adam M, Delsanti M, Durand D (1985) Macromolecules 18:2285. doi:https://doi.org/10.1021/ma00153a041

    Article  CAS  Google Scholar 

  12. Malkin AY (1985) Plaste Kautschuk 32:281

    CAS  Google Scholar 

  13. Allain C, Salome L (1987) Polym Commun (Guildf) 28:109

    Article  CAS  Google Scholar 

  14. Axelos MAV, Kolb M (1990) Phys Rev Lett 64:1457. doi:https://doi.org/10.1103/PhysRevLett.64.1457

    Article  CAS  Google Scholar 

  15. Tung CYM, Dynes PJ (1982) J Appl Polym Sci 27:569. doi:https://doi.org/10.1002/app.1982.070270220

    Article  CAS  Google Scholar 

  16. Chambon F, Petrovic ZS, MacKnight WJ, Winter HH (1986) Macromolecules 19:2146. doi:https://doi.org/10.1021/ma00162a007

    Article  CAS  Google Scholar 

  17. Winter HH (1987) Polym Eng Sci 27:1698

    Article  CAS  Google Scholar 

  18. Chambon F, Winter HH (1987) J Rheol (NYNY) 31:683. doi:https://doi.org/10.1122/1.549955

    Article  CAS  Google Scholar 

  19. Vilgis TA, Winter HH (1988) Colloid Polym Sci 266:494. doi:https://doi.org/10.1007/BF01420759

    Article  CAS  Google Scholar 

  20. Scanlan IC, Winter HH (1991) Macromolecules 24:47. doi:https://doi.org/10.1021/ma00001a008

    Article  CAS  Google Scholar 

  21. Izuka A, Winter HH, Hashimoto T (1992) Macromolecules 25:2422. doi:https://doi.org/10.1021/ma00035a020

    Article  CAS  Google Scholar 

  22. Kjøniksen AL, Nyström B (1996) Macromolecules 29:5215. doi:https://doi.org/10.1021/ma960094q

    Article  Google Scholar 

  23. Mours M, Winter HH (1996) Macromolecules 29:7221. doi:https://doi.org/10.1021/ma9517097

    Article  CAS  Google Scholar 

  24. Gao D, Heimann RB, Williams MC, Wardhaugh LT, Muhammad M (1999) J Mater Sci 34:1543. doi:https://doi.org/10.1023/A:1004516330255

    Article  Google Scholar 

  25. Lai SM, Li HC, Liao YC (2007) Eur Polym J 43:1660. doi:https://doi.org/10.1016/j.eurpolymj.2007.02.009

    Article  CAS  Google Scholar 

  26. Hassan A, Othman N, Wahit MU, Wei LJ, Rahmat AR, Ishak ZAM (2006) Macromol Symp 239:182. doi:https://doi.org/10.1002/masy.200690095

    Article  CAS  Google Scholar 

  27. Tjong S, Xu S, Mai Y (2003) J Mater Sci 38:207. doi:https://doi.org/10.1023/A:1021132725370

    Article  CAS  Google Scholar 

  28. Huang JJ, Keskkula H, Paul DR (2006) Polym Guildf 47:639. doi:https://doi.org/10.1016/j.polymer.2005.11.088

    Article  CAS  Google Scholar 

  29. Bucknall CB, Lazzeri A (2000) J Mater Sci 35:427. doi:https://doi.org/10.1023/A:1004719401349

    Article  CAS  Google Scholar 

  30. Oommen Z, Zachariah SR, Thomas S, Groeninckx G, Moldenaers P, Mewis J (2004) J Appl Polym Sci 92:252. doi:https://doi.org/10.1002/app.13652

    Article  CAS  Google Scholar 

  31. Kumar CR, Nair SV, George KE (2003) Polym Eng Sci 43:1555

    Article  CAS  Google Scholar 

  32. Wang XD, Li HQ (2001) J Appl Polym Sci 36:5465

    CAS  Google Scholar 

  33. Han CD (1976) Rheology in polymer processing. Academic Press, New York

    Google Scholar 

  34. Yanovsky YG (1993) Polymer rheology: theory and practice. Chapman & Hall, London

    Book  Google Scholar 

  35. Adolf D, Martin JE, Wilcoxon JP (1990) Macromolecules 23:527. doi:https://doi.org/10.1021/ma00204a028

    Article  CAS  Google Scholar 

  36. Mortimer S, Ryan AJ, Stanford JL (2001) Macromolecules 34:2973. doi:https://doi.org/10.1021/ma001835x

    Article  CAS  Google Scholar 

  37. Eloundou JP, Gerard JF, Harran D, Pascault JP (1996) Macromolecules 29:6907. doi:https://doi.org/10.1021/ma960287d

    Article  CAS  Google Scholar 

  38. Eloundou JP, Gerard JF, Harran D, Pascault JP (1996) Macromolecules 29:6917. doi:https://doi.org/10.1021/ma9602886

    Article  CAS  Google Scholar 

  39. Hu X, Fan J, Yue CY (2001) J Appl Polym Sci 80:2437. doi:https://doi.org/10.1002/app.1350

    Article  CAS  Google Scholar 

  40. Nijenhuis K, Winter HH (1989) Macromolecules 22:411. doi:https://doi.org/10.1021/ma00191a074

    Article  Google Scholar 

  41. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  42. Chambon F, Winter HH (1985) Polym Bull 13:499. doi:https://doi.org/10.1007/BF00263470

    Article  CAS  Google Scholar 

  43. Schwittay C, Mours M, Winter HH (1995) Faraday Discuss 101:93. doi:https://doi.org/10.1039/fd9950100093

    Article  CAS  Google Scholar 

  44. Peyrelasse J, Lamarque M, Habas JP, Bounia NE (1996) Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 53:6126. doi:https://doi.org/10.1103/PhysRevE.53.6126

    CAS  Google Scholar 

  45. Majumdar B, Keskkula H, Paul DR (1994) Polym Guildf 35:1386. doi:https://doi.org/10.1016/0032-3861(94)90338-7

    Article  CAS  Google Scholar 

  46. Jafari SH, Pötschkea P, Stephan M, Warth H, Alberts H (2002) Polym Guildf 43:6985. doi:https://doi.org/10.1016/S0032-3861(02)00614-6

    Article  CAS  Google Scholar 

  47. Scott CE, Macosko CW (1995) Polym Guildf 36:461. doi:https://doi.org/10.1016/0032-3861(95)91554-K

    Article  CAS  Google Scholar 

  48. Oshinski AJ, Keskkula H, Paul DR (1992) Polym Guildf 33:284. doi:https://doi.org/10.1016/0032-3861(92)90985-6

    Article  CAS  Google Scholar 

  49. Okada O, Keskkula H, Paul DR (2000) Polym Guildf 41:8061. doi:https://doi.org/10.1016/S0032-3861(00)00163-4

    Article  CAS  Google Scholar 

  50. Wu SH (1988) J Appl Polym Sci 35:549. doi:https://doi.org/10.1002/app.1988.070350220

    Article  CAS  Google Scholar 

  51. Margolina A, Wu SH (1988) Polym Guildf 29:2170. doi:https://doi.org/10.1016/0032-3861(88)90108-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjie Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Cao, Y., Wang, J. et al. The gelation behaviors of the reactive blends of nylon1212 and functional elastomer. J Mater Sci 43, 5755–5762 (2008). https://doi.org/10.1007/s10853-008-2885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2885-6

Keywords

Navigation