Advertisement

Journal of Materials Science

, 43:5747 | Cite as

Energy based model to assess interfacial adhesion using a scratch test

  • Vincent Le Houérou
  • Christian Gauthier
  • Robert Schirrer
Article

Abstract

A common way to improve the scratch resistance of a sensitive surface is to coat it with a thin film. However, the substrate/thin film adhesion must be well controlled and measurable. The contribution of the present work is to propose a global energy balance model of the blistering process for the scratching of a substrate/thin film system, which permits one to determine the adhesion of the system. The adhesion can be measured by following the delaminated area as a function of the scratching distance during blistering. The particular case of an experimental stable blistering process was studied and the corresponding substrate/thin film adhesion was derived using the global energy balance model.

Keywords

Plastic Zone Transient State Interfacial Adhesion Elastic Strain Energy Scratch Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Vtip

Scratching velocity

Fn,Ft

Normal and tangential loads respectively

T

Temperature

ΔW

Work provided by the loading indenter

ΔEF

Fracture energy

ΔED

Energy released in dissipative phenomena other than fracture

ΔEE

Elastic energy

d

Scratching distance

µapp

Apparent friction coefficient

µlocal

Local friction coefficient

ΔAinterf.

Surface created at the interface

ΔAcoh.

Surface created within the material

γs−interf.

Surface energy required to create 1 unit of interfacial new surface

γs−coh.

Surface energy required to create 1 unit of cohesive new surface

δWD

Dissipative work (fracture excluded) per unit of scratching distance

δWE

Elastic work per unit of scratching distance

δWDP

Plastic deformation work of the system per unit of scratching distance

δWDF

Work due to the true local friction

σy

Yield stress of the substrate

St

Cross section of the plastic zone in the scratching track left on the surface

ΔAB

Area of the blister

patm

Atmospheric pressure

\( \overline {h_{{\text{a}}} } \)

Average height of the blister

ΔA

Delaminated area variation

Δd

Scratching distance variation

Width

Width of the blister as defined in Fig. 1

R

Radius of curvature of the indenter tip

a

Contact radius

e

Thickness of the film

Lg

Width of the groove

\( \dot \varepsilon \)

Strain rate

Notes

Acknowledgement

The authors would like to thank C. Robert for his preliminary experimental work.

References

  1. 1.
    Bull SJ, Berasetegui EG (2006) Tribol Int 39:99. doi: 10.1016/j.triboint.2005.04.013 CrossRefGoogle Scholar
  2. 2.
    Hutchinson JW, Suo Z (1992) Adv Appl Mech 29:63CrossRefGoogle Scholar
  3. 3.
    Mittal KL (1978) Adhesion measurement of thin films, thick films and bulk coatings. STP 640, ASTM, Philadelphia, PAGoogle Scholar
  4. 4.
    Thouless MD (1998) Eng Fract Mech 61:75. doi: 10.1016/S0013-7944(98)00049-6 CrossRefGoogle Scholar
  5. 5.
    Volinsky AA, Moody NR, Gerberich WW (2002) Acta Mater 50:441. doi: 10.1016/S1359-6454(01)00354-8 CrossRefGoogle Scholar
  6. 6.
    Ritter JE, Lardner TJ, Rosenfeld L, Lin MR (1989) J Appl Phys 66:3626. doi: 10.1063/1.344071 CrossRefGoogle Scholar
  7. 7.
    Bull SJ, Rickerby DS (1990) Surf Coat Tech 42:149. doi: 10.1016/0257-8972(90)90121-R CrossRefGoogle Scholar
  8. 8.
    Perry AJ (1983) Thin Solid Films 107:167. doi: 10.1016/0040-6090(83)90019-6 CrossRefGoogle Scholar
  9. 9.
    Kriese MD, Boismier DA, Moody NR, Gerberich WW (1998) Eng Fract Mech 61:1. doi: 10.1016/S0013-7944(98)00050-2 CrossRefGoogle Scholar
  10. 10.
    Holmberg K, Laukkanen A, Ronkainen H, Wallin K, Varjus S, Koskinen J (2006) Surf Coat Tech 200:3793. doi: 10.1016/j.surfcoat.2005.03.040 CrossRefGoogle Scholar
  11. 11.
    Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) Thin Solid Films 359:1. doi: 10.1016/S0040-6090(99)00729-4 CrossRefGoogle Scholar
  12. 12.
    Bull SJ (1997) Tribol Int 30:491. doi: 10.1016/S0301-679X(97)00012-1 CrossRefGoogle Scholar
  13. 13.
    Li J, Beres W (2007) Can Metall Q 46:155Google Scholar
  14. 14.
    Le Houérou V, Robert C, Gauthier C, Schirrer R (2008) Wear 265:507. doi: 10.1016/j.wear.2007.11.019 CrossRefGoogle Scholar
  15. 15.
    Gauthier C, Schirrer R (2000) J Mater Sci 35:2121. doi: 10.1023/A:1004798019914 CrossRefGoogle Scholar
  16. 16.
    Dupeux M (2004) Mecanique Indust 5:441. doi: 10.1051/meca:2004044 CrossRefGoogle Scholar
  17. 17.
    Bucaille JL, Gauthier C, Felder E, Schirrer R (2006) Wear 260:803. doi: 10.1016/j.wear.2005.04.007 CrossRefGoogle Scholar
  18. 18.
    Lafaye S, Gauthier C, Schirrer R (2005) Tribol Int 38:113. doi: 10.1016/j.triboint.2004.06.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vincent Le Houérou
    • 1
  • Christian Gauthier
    • 1
  • Robert Schirrer
    • 1
  1. 1.Institut Charles Sadron (I.C.S.), CNRS UPR 022Strasbourg cedex 2France

Personalised recommendations