Skip to main content
Log in

TiO2 foams with poly-(d,l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds

  • Syntactic and Composite Foams
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 foam-like scaffolds with pore size ~300 μm and >95% porosity were fabricated by the foam replication method. A new approach to improve the structural integrity of the as-sintered foams, which exhibit extremely low compression strength, was explored by coating them with poly-(d,l-lactic acid) (PDLLA) or PDLLA/Bioglass® layers. The PDLLA coating was shown to improve the mechanical properties of the scaffold: the compressive strength was increased by a factor of ~7. The composite coating involving Bioglass® particles was shown to impart the rutile TiO2 scaffold with the necessary bioactivity for the intended applications in bone tissue engineering. A dense hydroxyapatite layer formed on the surface of the foams upon immersion in simulated body fluid for 1 week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hench LL, Polak JM (2002) Science 295:1014. doi:https://doi.org/10.1126/science.1067404

    Article  CAS  Google Scholar 

  2. Agrawal CM, Ray RB (2001) J Biomed Mater Res 55:141. doi:10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J

    Article  CAS  Google Scholar 

  3. Hollister S (2005) Nat Mater 4:518. doi:https://doi.org/10.1038/nmat1421

    Article  CAS  Google Scholar 

  4. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413. doi:https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  CAS  Google Scholar 

  5. Haugen H, Will J, Koehler A, Hopfner U, Aigner J, Wintermantel E (2004) J Eur Ceram Soc 24:661. doi:https://doi.org/10.1016/S0955-2219(03)00255-3

    Article  CAS  Google Scholar 

  6. Meretoja VV, Tirri T, Aaritalo V, Walboomers XF, Jansen JA, Narhi T (2007) Tissue Eng 13:855. doi:https://doi.org/10.1089/ten.2006.0234

    Article  CAS  Google Scholar 

  7. Petronis S, Eckert KL, Gold J, Wintermantel E (2001) J Mater Sci Mater Med 12:523. doi:https://doi.org/10.1023/A:1011219729687

    Article  CAS  Google Scholar 

  8. Boccaccini AR, Blaker JJ, Maquet V, Chung W, Jerome R, Nazhat SN (2006) J Mater Sci 41:3999. doi:https://doi.org/10.1007/s10853-006-7575-7

    Article  CAS  Google Scholar 

  9. Li P, Kangasniemi I, de Groot K (1994) J Am Ceram Soc 77(5):1307. doi:https://doi.org/10.1111/j.1151-2916.1994.tb05407.x

    Article  CAS  Google Scholar 

  10. Wu JM, Liu JF, Hayakawa S, Tsuru K, Osaka A (2007) J Mater Sci Mater Med 18:1529. doi:https://doi.org/10.1007/s10856-006-0115-9

    Article  CAS  Google Scholar 

  11. Jokinen M, Patsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) J Biomed Mater Res 42:295. doi:10.1002/(SICI)1097-4636(199811)42:2<295::AID-JBM15>3.0.CO;2-I

    Article  CAS  Google Scholar 

  12. Polonchuk L, Elbel J, Eckert L, Blum J, Wintermantel E, Eppenberger HM (2000) Biomaterials 21:539

    Article  CAS  Google Scholar 

  13. Karageorgiou V, Kaplan D (2005) Biomaterials 26:5674. doi:https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  Google Scholar 

  14. Schwartzwalder K (1963) US Patent No. 3090094

  15. Chen QZ, Thompson I, Boccaccini AR (2006) Biomaterials 27:2414. doi:https://doi.org/10.1016/j.biomaterials.2005.11.025

    Article  CAS  Google Scholar 

  16. Chen QZ, Boccaccini AR (2006) J Biomed Mater Res A 77A(3):445. doi:https://doi.org/10.1002/jbm.a.30636

    Article  CAS  Google Scholar 

  17. Hench LL (1998) J Am Ceram Soc 81:1705

    Article  CAS  Google Scholar 

  18. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721. doi:https://doi.org/10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  19. Hwu Y, Yao YD, Cheng NF, Tung CY, Lin HM (1997) Nanostruct Mater 9:355. doi:https://doi.org/10.1016/S0965-9773(97)00082-2

    Article  CAS  Google Scholar 

  20. Muthutantri AI, Huang J, Edirisinghe MJ (2008) J R Soc Interface. doi:https://doi.org/10.1098/rsif.2008.0092

    Article  Google Scholar 

  21. Muthutantri AI, Huang J, Edirisinghe MJ, Bretcanu O, Boccaccini AR (2008) Biomed Mater 3:025009, 14 pp

    Article  Google Scholar 

  22. Chen QZ, Zhang HB, Wang DZ, Edirisinghe MJ, Boccaccini AR (2006) J Am Ceram Soc 89:1534. doi:https://doi.org/10.1111/j.1551-2916.2006.00935.x

    Article  CAS  Google Scholar 

  23. Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier G, Hamaide T (2007) J Eur Ceram Soc 27:2679. doi:https://doi.org/10.1016/j.jeurceramsoc.2006.10.016

    Article  CAS  Google Scholar 

  24. Miao X, Tan LP, Tan LS, Huang X (2007) Mater Sci Eng C 27:274. doi:https://doi.org/10.1016/j.msec.2006.05.008

    Article  CAS  Google Scholar 

  25. Miao X, Tan DM, Li J, Xiao Y, Crawford R (2008) Acta Biomater 4:638. doi:https://doi.org/10.1016/j.actbio.2007.10.006

    Article  CAS  Google Scholar 

  26. Kim HW, Knowles JC, Kim HE (2004) J Biomed Mater Res 70B:240. doi:https://doi.org/10.1002/jbm.b.30038

    Article  CAS  Google Scholar 

  27. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd edn. Pergamon, Oxford, pp 429–452

    Google Scholar 

  28. Yunos DM, Bretcanu O, Boccaccini AR (2008) J Mater Sci 43:4433. doi:https://doi.org/10.1007/s10853-008-2552-y

    Article  Google Scholar 

  29. Nalla RK, Kinney JH, Ritchie RO (2003a) Nat Mater 2:164. doi:https://doi.org/10.1038/nmat832

    Article  CAS  Google Scholar 

  30. Nalla RK, Kinney JH, Ritchie RO (2003b) Biomaterials 24:3955. doi:https://doi.org/10.1016/S0142-9612(03)00278-3

    Article  CAS  Google Scholar 

  31. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R (2002) Biomaterials 23:3871. doi:https://doi.org/10.1016/S0142-9612(02)00131-X

    Article  CAS  Google Scholar 

  32. Helen W, Merry CL, Blaker JJ, Gough JE (2007) Biomaterials 28:2010. doi:https://doi.org/10.1016/j.biomaterials.2007.01.011

    Article  CAS  Google Scholar 

  33. Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) Biomaterials 25:3013. doi:https://doi.org/10.1016/j.biomaterials.2003.09.081

    Article  CAS  Google Scholar 

  34. Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jérôme R (2002) J Mater Sci Mater Med 13:1207. doi:https://doi.org/10.1023/A:1021166726914

    Article  CAS  Google Scholar 

  35. Boccaccini AR, Gerhardt L-C, Rebeling S, Blaker JJ (2005) Compos Part A 36:721. doi:https://doi.org/10.1016/j.compositesa.2004.11.002

    Article  Google Scholar 

  36. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) J Biomed Mater Res 64A:164. doi:https://doi.org/10.1002/jbm.a.10414

    Article  CAS  Google Scholar 

  37. Wu J-M, Hayakawa S, Tsuru K, Osaka A (2004) J Am Ceram Soc 87:1635

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, S., Druce, J., Chen, QZ. et al. TiO2 foams with poly-(d,l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds. J Mater Sci 44, 1442–1448 (2009). https://doi.org/10.1007/s10853-008-2858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2858-9

Keywords

Navigation