Journal of Materials Science

, Volume 43, Issue 17, pp 5948–5951 | Cite as

Fabrication and characterization of Li0.5Fe2.5O4 octahedrons via a TEA-assisted route



Octahedral-like Li0.5Fe2.5O4 crystallites have been fabricated using a TEA-assisted route under mild conditions. The as-prepared powders were characterized in detail by conventional techniques such as XRD, TEM, and FESEM. The saturation magnetization (Ms), remnant magnetization (Mr), and coercivity (Hc) have been determined to be 84, 6 emu/g, and 85 Oe, respectively. Meanwhile, the electrochemical properties of Li0.5Fe2.5O4 demonstrate that it delivers a large discharge capacity, which might find possible application as an electrode material in lithium cells.


Ferrite Field Emission Scanning Electron Microscopic Ethylene Carbonate Lithium Ferrite Representative Transmission Electron Microscopic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the CREST program of the Japan Science and Technology Agency (JST). We are grateful to young and middle aged academic leaders of Jiangsu Province universities’ “blue and green blue project”. We are grateful to the electron microscope and X-ray diffraction facilities of university of science & technology of China for assistance in XRD and SEM measurements.


  1. 1.
    Thackeray MM, David WIF, Goodenough JB (1984) J Solid State Chem 55:280. doi: 10.1016/0022-4596(84)90278-0 CrossRefGoogle Scholar
  2. 2.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496. doi: 10.1038/35035045 CrossRefGoogle Scholar
  3. 3.
    Kim SS, Ogura S, Ikuta H, Uchimoto Y, Wakihara M (2002) Solid State Ionics 146:249. doi: 10.1016/S0167-2738(01)01013-X CrossRefGoogle Scholar
  4. 4.
    Di Pietro B, Patriarca M, Scrosati B (1982) J Power Sources 8:289. doi: 10.1016/0378-7753(82)80062-1 CrossRefGoogle Scholar
  5. 5.
    Abraham KM, Pasquariello DM, Willstaedt EB (1990) J Electrochem Soc 137:743. doi: 10.1149/1.2086548 CrossRefGoogle Scholar
  6. 6.
    Sakurai Y, Arai H, Okada S, Yamaki J (1997) J Power Sources 68:711. doi: 10.1016/S0378-7753(96)02579-7 CrossRefGoogle Scholar
  7. 7.
    Sakurai Y, Arai H, Yamaki J (1998) Solid State Ionics 29:113Google Scholar
  8. 8.
    Hua S, Cao G, Cui Y (1998) J Power Sources 76:112. doi: 10.1016/S0378-7753(98)00131-1 CrossRefGoogle Scholar
  9. 9.
    Larcher D, Bonnin D, Cortes R, Rivals I, Personnaz L, Tarascon JM (2003) J Electrochem Soc 150:1643. doi: 10.1149/1.1622959 CrossRefGoogle Scholar
  10. 10.
    Lu CH, Wang HC (2007) J Mater Sci 42:752. doi: 10.1007/s10853-006-1447-z CrossRefGoogle Scholar
  11. 11.
    Lee JT, Chu YJ, Wang FM, Yang CR, Li CC (2007) J Mater Sci 42:10118. doi: 10.1007/s10853-007-2068-x CrossRefGoogle Scholar
  12. 12.
    Lee YT, Yoon CS, Lee YS, Sun YK (2004) J Power Sources 134:88. doi: 10.1016/j.jpowsour.2004.02.001 CrossRefGoogle Scholar
  13. 13.
    Tomas A, Laruelle P, Dormann JL, Nogues M (1983) Acta Crystallogr Sect C Crystallogr Struct Commun 39:1615. doi: 10.1107/S0108270183009488 CrossRefGoogle Scholar
  14. 14.
    Verma S, Joy PA (2005) J Appl Phys 98:124312. doi: 10.1063/1.2149493 CrossRefGoogle Scholar
  15. 15.
    Verma S, Karande J, Patidar A, Joy PA (2005) Mater Lett 59:2630. doi: 10.1016/j.matlet.2005.04.005 CrossRefGoogle Scholar
  16. 16.
    Baijal JS, Phanjoubam S, Kothari D (1992) Solid State Commun 83:679. doi: 10.1016/0038-1098(92)90144-X CrossRefGoogle Scholar
  17. 17.
    Kuznetsov MV, Pankhurst QA, Parkin IP (1998) J Phys D Appl Phys 31:2886. doi: 10.1088/0022-3727/31/20/024 CrossRefGoogle Scholar
  18. 18.
    Gonzalez Arias A, del Gueto A, Munoz JM, de Francisco C (1998) Mater Lett 33:187. doi: 10.1016/S0167-577X(98)00089-5 CrossRefGoogle Scholar
  19. 19.
    Pardavi-Horvath M (2000) J Magn Magn Mater 215–216:171. doi: 10.1016/S0304-8853(00)00106-2 CrossRefGoogle Scholar
  20. 20.
    Sankaranarayanana VK, Prakasha O, Panta RP, Islam M (2002) J Magn Magn Mater 252:7. doi: 10.1016/S0304-8853(02)00708-4 CrossRefGoogle Scholar
  21. 21.
    Tabuchi M (1998) J Solid State Chem 141:554. doi: 10.1006/jssc.1998.8018 CrossRefGoogle Scholar
  22. 22.
    Kim J, Manthiram A (1999) J Electrochem Soc 146:437. doi: 10.1149/1.1391626 CrossRefGoogle Scholar
  23. 23.
    Wang X, Gao LS, Li L, Zheng HG, Zhang ZD, Yu WC, Qian YT (2005) Nanotechnology 16:2677CrossRefGoogle Scholar
  24. 24.
    Kommareddi NS, Tata M, John VT, McPherson GL, Herman MF, Lee YS (1996) Chem Mater 8:801. doi: 10.1021/cm940485o CrossRefGoogle Scholar
  25. 25.
    Kodama RH, Berkowitz AE, Mcniff EJ (1996) Phys Rev Lett 77:394. doi: 10.1103/PhysRevLett.77.394 CrossRefGoogle Scholar
  26. 26.
    Wang J, Chen QW, Hou BY, Peng ZM (2004) Eur J Inorg Chem 6:1165. doi: 10.1002/ejic.200300555 CrossRefGoogle Scholar
  27. 27.
    Song Q, Zhang ZJ (2004) J Am Chem Soc 126:6164. doi: 10.1021/ja049931r CrossRefGoogle Scholar
  28. 28.
    Fu YP, Hsu CS (2005) Solid State Commun 134:201. doi: 10.1016/j.ssc.2004.12.035 CrossRefGoogle Scholar
  29. 29.
    Qi XW, Zhou J, Yue ZX, Gui ZL, Li LT (2003) Mater Sci Eng B99:278. doi: 10.1016/S0921-5107(02)00524-X CrossRefGoogle Scholar
  30. 30.
    Dey S, Roy A, Das D, Ghose J (2004) J Magn Magn Mater 270:224. doi: 10.1016/j.jmmm.2003.08.024 CrossRefGoogle Scholar
  31. 31.
    Ahniyaz A, Fujiwara T, Song SW, Yoshimura M (2002) Solid State Ionics 151:419. doi: 10.1016/S0167-2738(02)00548-9 CrossRefGoogle Scholar
  32. 32.
    Kanno R, Shirane T, Kawamoto Y, Takeda Y, Takano M, Ohashi M (1996) J Electrochem Soc 143:2435. doi: 10.1149/1.1837027 CrossRefGoogle Scholar
  33. 33.
    Tabuchi M et al (1996) Solid State Ionics 90:129. doi: 10.1016/S0167-2738(96)00414-6 CrossRefGoogle Scholar
  34. 34.
    Ado K, Tabuchi M, Kobayashi H, Kageyama H, Nakamura O, Inaba Y et al (1997) J Electrochem Soc 144:L177. doi: 10.1149/1.1837791 CrossRefGoogle Scholar
  35. 35.
    Bordet-Le Guenne L, Deniard P, Lecerf A, Baaiensan P, Siret C, Fournes L et al (1998) Ionics 4:220. doi: 10.1007/BF02375949 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHuaihai Institute of TechnologyLianyungangPeople’s Republic of China
  2. 2.SORSTJapan Science and Technology Agency (JST)Kawaguchi-shi, SaitamaJapan

Personalised recommendations