Advertisement

Journal of Materials Science

, Volume 43, Issue 16, pp 5504–5507 | Cite as

Selective synthesis of α- and β-SrHPO4 nanoparticles

  • Marcus Roming
  • Claus Feldmann
Article

Abstract

Nanoscale SrHPO4 is prepared via a polyol-mediated synthesis. The resulting particles are well crystallized, non-agglomerated, and very uniform in size and shape. By adjusting the experimental conditions, SrHPO4 can be obtained with the α-type as well as with the β-type of modification. In particular, particle diameters of 16 nm (α-SrHPO4) and 12 nm (β-SrHPO4) are obtained. The title compound is characterized by scanning electron microscopy, dynamic light scattering, X-ray powder diffraction, and infrared spectroscopy.

Keywords

Dynamic Light Scattering Dynamic Light Scattering Polyol Diethylene Glycol Typical Recipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fischer A, Mallat T, Baiker A (1997) Catal Today 37:167. doi: 10.1016/S0920-5861(97)00009-6 CrossRefGoogle Scholar
  2. 2.
    Louati B, Guidara K, Gargouri M, Fourati M (2005) Z Naturforsch 60a:121Google Scholar
  3. 3.
    Kim J, Noh M, Cho J, Kim HM, Kim KB (2005) J Electrochem Soc 152:A1142. doi: 10.1149/1.1896526zz CrossRefGoogle Scholar
  4. 4.
    Levchik SV, Weil ED (2006) J Fire Sci 24(5):364. doi: 10.1177/0734904106068426 CrossRefGoogle Scholar
  5. 5.
    Boudjada A, Masse R, Guitel JC (1978) Acta Crystallogr B 34:2692. doi: 10.1107/S0567740878009036 CrossRefGoogle Scholar
  6. 6.
    Taher LB, Smiri L, Laligant Y, Maisonneuve V (2000) J Solid State Chem 152:428. doi: 10.1006/jssc.2000.8700 CrossRefGoogle Scholar
  7. 7.
    Purnendu P, Ray AR, Ramanan A (2007) J Am Ceram Soc 90(4):1237. doi: 10.1111/j.1551-2916.2007.01508.x CrossRefGoogle Scholar
  8. 8.
    Purnendu P, Ramanan A, Ray AR (2006) Am J Biochem. Biotechnol 2(2):61Google Scholar
  9. 9.
    Zheng Y, Cheng Y, Wang Y, Yu Y, Chen D, Bao F (2005) J Cryst Growth 280:569. doi: 10.1016/j.jcrysgro.2005.03.067 CrossRefGoogle Scholar
  10. 10.
    Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet F (2000) J Mater Sci 35:3767. doi: 10.1023/A:1004864927169 CrossRefGoogle Scholar
  11. 11.
    Feldmann C, Jungk HO (2001) Angew Chem Int Ed 40:359. doi:10.1002/1521-3773(20010119)40:2<359::AID-ANIE359>3.0.CO;2-BCrossRefGoogle Scholar
  12. 12.
    Feldmann C, Roming M, Trampert K (2006) Small 2:1248. doi: 10.1002/smll.200600140 CrossRefGoogle Scholar
  13. 13.
    LaMer VK, Dinegar RH (1950) J Am Chem Soc 72:4847. doi: 10.1021/ja01167a001 CrossRefGoogle Scholar
  14. 14.
    Aia MA, Mathers JE, Mooney RW (1964) J Chem Eng Data 9:335. doi: 10.1021/je60022a006 CrossRefGoogle Scholar
  15. 15.
    Mooney RW, Aia MA, Hoffman CWW, Ropp RC (1959) J Am Chem Soc 81:827. doi: 10.1021/ja01513a020 CrossRefGoogle Scholar
  16. 16.
    Ostwald W (1897) Z Phys Chem 22:289Google Scholar
  17. 17.
    Ropp RC, Aia MA, Hoffman CWW, Veleker TJ, Mooney RW (1959) Anal Chem 31:1163. doi: 10.1021/ac60151a026 CrossRefGoogle Scholar
  18. 18.
    Boudjada A, Masse R, Guitel JC (1978) Acta Crystallogr B 34:2692. doi: 10.1107/S0567740878009036 CrossRefGoogle Scholar
  19. 19.
    Mel’nikova RY, Dzyuba ED, Pechkovskii VV, Barannikova TI, Kovalishina VI (1982) Russ J Inorg Chem 27:1724Google Scholar
  20. 20.
    Weidlein J, Müller U, Dehnicke K (1988) Schwingungsspektroskopie. Thieme Verlag, StuttgartGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut für Anorganische ChemieUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations