Skip to main content
Log in

Recent research progress on optical limiting property of materials based on phthalocyanine, its derivatives, and carbon nanotubes

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes and organic compounds with extensive delocalized π-electron system such as phthalocyanine and its derivatives are attracted much attention as potential optical limiting materials. In this article, the optical limiting properties of carbon nanotubes, phthalocyanine as well as its derivatives and modifying approaches to improve their optical limiting performance are reviewed. In addition, the optical limiting properties exhibited by the nanohybrids obtained from the combination between carbon nanotubes and phthalocyanine or its derivatives are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu B, Zhang C, Zhang W (2005) Organic-inorganic hybrid materials and application (Chinese), 1st edn. Chemical Industry Press, Beijing

    Google Scholar 

  2. O’Flaherty SM, Murphy R, Hold SV, Cadek M, Coleman JN, Blau WJ (2003) J Phys Chem B 107:958. doi:https://doi.org/10.1021/jp0271108

    Article  Google Scholar 

  3. Fu S, Zhu X, Zhou G, Wong W-Y, Ye C, Wong W-K et al (2007) Eur J Inorg Chem 2004. doi :https://doi.org/10.1002/ejic.200601190

    Article  Google Scholar 

  4. Huili S, Aizhi L (2004) Technol Econ Areas Commun (Chinese) 1:51

    Google Scholar 

  5. Vivien L, Izard N, Riehl D, Hache F, Anglaret E (2003) AIP Conf Proc 685:559. doi:https://doi.org/10.1063/1.1628093

    Article  CAS  Google Scholar 

  6. Liu Z, Tian J-G, Guo Z, Ren D-M, Du F, Zheng J-Y et al (2008) Adv Mater 20:511. doi:https://doi.org/10.1002/adma.200702547

    Article  CAS  Google Scholar 

  7. Sun X, Yu RQ, Xu GQ, Hor TSA, Jia W (1998) Appl Phys Lett 73(25):3632. doi:https://doi.org/10.1063/1.122845

    Article  CAS  Google Scholar 

  8. Slodek A, Wöhrle D, Doyle JJ, Blau W (2006) Macromol Symp 235:9. doi:https://doi.org/10.1002/masy.200650302

    Article  CAS  Google Scholar 

  9. O’Flaherty SM, Hold SV, Cook MJ, Torres T, Chen Y, Hanack M, Blau WJ (2003) Adv Mater 15:19

    Article  Google Scholar 

  10. Cheng F, Alex A (2006) Chem Eur J 12:5053. doi:https://doi.org/10.1002/chem.200600302

    Article  CAS  Google Scholar 

  11. Chen Y, Hanack M, O’Flaherty S, Bernd G, Zeug A, Roeder B et al (2003) Macromolecules 36:3786. doi:https://doi.org/10.1021/ma025939e

    Article  CAS  Google Scholar 

  12. Shirk JS, Pong RGS, Flom SR, Heckmann H, Hanack M (2000) J Phys Chem A 104:1438

    Article  CAS  Google Scholar 

  13. Hanack M, Schneider T, Barthel M, Shirk JS, Flom SR, Pong RGS (2001) Coord Chem Rev 219–221:235. doi:https://doi.org/10.1016/S0010-8545(01)00327-7

    Article  Google Scholar 

  14. Dini D, Barthel M, Hanack M (2001) Eur J Org Chem 3759–3769. doi :10.1002/1099-0690(200110)2001:20<3759::AID-EJOC3759>3.0.CO;2-U

    Article  Google Scholar 

  15. Chen P, Wu X, Sun X, Lin J, Ji W, Tan KL (1999) Phys Rev Lett 82(12):2548. doi:https://doi.org/10.1103/PhysRevLett.82.2548

    Article  CAS  Google Scholar 

  16. Wang J, Blau WJ (2008) J Phys Chem C 112:2298. doi:https://doi.org/10.1021/jp709926r

    Article  CAS  Google Scholar 

  17. Mishra SR, Rawat HS, Mehendale SC, Rustagi KC, Sood AK, Bandyopadhyay R, Govindaraj A, Rao CNR (2000) Chem Phys Lett 317:510. doi:https://doi.org/10.1016/S0009-2614(99)01304-4

    Article  CAS  Google Scholar 

  18. Riggs JE, Walker DB, Carroll DL, Sun Y-P (2000) J Phys Chem B 104:7071. doi:https://doi.org/10.1021/jp0011591

    Article  CAS  Google Scholar 

  19. Viviena L, Riehla D, Hacheb F, Anglaret E (2002) Physica B 323:233. doi:https://doi.org/10.1016/S0921-4526(02)00974-2

    Article  Google Scholar 

  20. Vivien L, Anglaret E, Riehl D, Hache F, Bacou F, Andrieux M et al (2000) Opt Commun 174:271. doi:https://doi.org/10.1016/S0030-4018(99)00656-2

    Article  CAS  Google Scholar 

  21. Nashold KM, Walter DP (1995) J Opt Soc Am B 12:1228

    Article  CAS  Google Scholar 

  22. Li Z, Dong Y, Halussler M, Lam JWY, Dong Y, Wu L, Wong KS, Tang BZ (2006) J Phys Chem B 110:2302. doi:https://doi.org/10.1021/jp056413+

    Article  CAS  Google Scholar 

  23. Martin RB, Qu L, Lin Y, Harruff BA, Bunker CE, Gord JR et al (2004) J Phys Chem B 108:11447

    Article  CAS  Google Scholar 

  24. Jin Z, Sun X, Xu G, Goh SH, Ji W (2000) Chem Phys Lett 318:505. doi:https://doi.org/10.1016/S0009-2614(00)00091-9

    Article  CAS  Google Scholar 

  25. Banerjee S, Hemraj-Benny T, Wong SS (2005) Adv Mater 17(1):6424. doi:https://doi.org/10.1002/adma.200401340

    Article  Google Scholar 

  26. Tang BZ, Xu H (1999) Macromolecules 32:2569. doi:https://doi.org/10.1021/ma981825k

    Article  CAS  Google Scholar 

  27. Chitta R, Sandanayaka ASD, Schumacher AL, D’Souza L, Araki Y, Ito O et al (2007) J Phys Chem C 111:6947. doi:https://doi.org/10.1021/jp0704416

    Article  CAS  Google Scholar 

  28. Cao L, Chen H, Wang M, Sun J, Zhang X, Kong F (2002) J Phys Chem B 106:8971. doi:https://doi.org/10.1021/jp020680n

    Article  CAS  Google Scholar 

  29. Li H, Martin RB, Harruff BA, Carino RA, Allard LF, Sun Y-P (2004) Adv Mater 16(11):896. doi:https://doi.org/10.1002/adma.200306288

    Article  CAS  Google Scholar 

  30. de la Torre G, Va’zquez P, Agulló-López F, Torres T (2004) Chem Rev 104:3723. doi:https://doi.org/10.1021/cr030206t

    Article  Google Scholar 

  31. Perry JW, Mansour K, Marder SR, Perry KJ, Alvarez D Jr, Choong I (1994) Opt Lett 19:625

    Article  CAS  Google Scholar 

  32. Chen Y, Subramanian LR, Fujitsuka M, Ito O, O’Flaherty S, Blau WJ, Schneider T, Dini D, Hanack M (2002) Chem Eur J 8(18):4248. doi :10.1002/1521-3765(20020916)8:18<4248::AID-CHEM4248>3.0.CO;2-R

    Article  CAS  Google Scholar 

  33. Manas ES, Spano FC, Chen LX (1997) J Chem Phys 107(3):707. doi:https://doi.org/10.1063/1.474436

    Article  CAS  Google Scholar 

  34. Krivokapic A, Anderson HL, Bourhill G, Ives R, Clark S, McEwan KJ (2001) Adv Mater 13(9):652. doi :10.1002/1521-4095(200105)13:9<652::AID-ADMA652>3.0.CO;2-3

    Article  CAS  Google Scholar 

  35. Wang J, Blau WJ (2008) J Phys Chem C 112:2298

    Article  CAS  Google Scholar 

  36. Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ, Coleman JN (2006) J Phys Chem B 110:15708

    Article  CAS  Google Scholar 

  37. Balasubramanian K, Burghard M (2005) Small 1(2):180. doi:https://doi.org/10.1002/smll.200400118

    Article  CAS  Google Scholar 

  38. Zang L, Liu C, Li Q, Wang Z, Liu Z, Gong Q (2006) Opt Commun 265:354

    Article  CAS  Google Scholar 

  39. Luqi L, Zhang S, Qin Y, Guo Z-X, Ye C, Zhu D (2003) Synth Met 135–136:853

    Google Scholar 

  40. Jin Z, Huang L, Goh SH, Xu G, Ji W (2002) Chem Phys Lett 352:328

    Article  CAS  Google Scholar 

  41. Angeles Herranz M, Ehli C, Campidelli S, Gutiérrez M, Hug GL, Ohkubo K, Fukuzumi S, Prato M, Martin N, Guldi DM (2008) J Am Chem Soc 130:66

    Article  CAS  Google Scholar 

  42. Martin RB, Fu K, Sun Y-P (2003) Chem Phys Lett 375:619

    Article  CAS  Google Scholar 

  43. Xu M, Zhang T, Gu B, Wu J, Chen Q (2006) Macromolecules 39:3540

    Article  CAS  Google Scholar 

  44. Hatton RA, Blanchard NP, Stolojan V, Miller AJ, Ravi S, Silva P (2007) Langmuir 23:6424

    Article  CAS  Google Scholar 

  45. Camp PJ, Jones AC, Neely RK, Speirs NM (2002) J Phys Chem A 106:10725

    Article  CAS  Google Scholar 

  46. Ballesteros B, de la Torre G, Ehli C, Aminur Rahman GM, Agulló-Rueda F, Guldi DM, Torres T (2007) J Am Chem Soc 129:5061

    Article  CAS  Google Scholar 

  47. Menard-Moyon C, Izard N, Doris E, Mioskowski C (2006) J Am Chem Soc 128:6552

    Article  CAS  Google Scholar 

  48. Chiu PW, Duesberg GS, Dettlaff-Weglikowska U, Roth S (2002) Appl Phys Lett 80(20):3811

    Article  CAS  Google Scholar 

  49. Dyke CA, Tour JM (2004) Chem Eur J 10:812

    Article  CAS  Google Scholar 

  50. Feng W, Li Y, Feng Y, Wu J (2006) Nanotechnology 17:3274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Wang, L. Recent research progress on optical limiting property of materials based on phthalocyanine, its derivatives, and carbon nanotubes. J Mater Sci 43, 5692–5701 (2008). https://doi.org/10.1007/s10853-008-2826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2826-4

Keywords

Navigation