Skip to main content
Log in

Synthesis and characterization of high surface area silicon carbide by dynamic vacuum carbothermal reduction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) precursor was obtained by sol–gel used tetraethoxysilane as silicon source and saccharose as carbon source, and then the precursor was used to prepare SiC by carbothermal reduction under dynamic vacuum condition. The samples were characterized by X-ray diffraction, scanning electron microscope, and low-temperature nitrogen adsorption–desorption measurement. The results showed that the carbothermal temperature for synthesizing SiC needed to be at 1,100 °C under dynamic vacuum. At this temperature, the obtained sample is composed of agglomerated regular grains with size ranging from 20 to 40 nm and has a high surface area of 167 m2/g and the main pore size center at 5.3 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Powder Diffraction File JCPDS 1601 Park Lane, Swarthmore, PA 19081-2389, USA, 2001.

References

  1. Okada K, Kata H, Nakajima K (1994) J Am Ceram Soc 77:1691. doi:https://doi.org/10.1111/j.1151-2916.1994.tb09782.x

    Article  CAS  Google Scholar 

  2. Bao X, Nangerjo MR, Edirisinghe MJ (2000) J Mater Sci 35:4365. doi:https://doi.org/10.1023/A:1004805023228

    Article  CAS  Google Scholar 

  3. Gadzira M, Gnesin G, Mykhaylyk O, Andreyev O (1998) Diamond Relat Mater 7:1466. doi:https://doi.org/10.1016/S0925-9635(98)00201-5

    Article  CAS  Google Scholar 

  4. Pascal DG, Huu CP, Christophe B, Estournes C, Ledoux MJ (1997) Appl Catal A 156:131. doi:https://doi.org/10.1016/S0926-860X(97)00004-5

    Article  Google Scholar 

  5. Frederic M, Behrang M, Claude C (1997) J Catal 169:33. doi:https://doi.org/10.1006/jcat.1997.1694

    Article  Google Scholar 

  6. Marc J, Ledoux M, Huu PC (2000) Catal Today 61:157. doi:https://doi.org/10.1016/S0920-5861(00)00365-5

    Article  Google Scholar 

  7. Nicolas K, Valerie K, Elodie B, Francois G, Ledoux MJ (2004) J Mater Chem 14:1887. doi:https://doi.org/10.1039/b400993b

    Article  Google Scholar 

  8. Moene R, Tijsen EPAM, Makkeel M (1999) Appl Catal A 184:127. doi:https://doi.org/10.1016/S0926-860X(99)00098-8

    Article  CAS  Google Scholar 

  9. Moene R, Makkee M, Moulijn JA (1998) Appl Catal A 167:321. doi:https://doi.org/10.1016/S0926-860X(97)00326-8

    Article  CAS  Google Scholar 

  10. Ledoux MJ, Sylvain H, Huu CP, Guille J, Desaneaux MP (1988) J Catal 114:176. doi:https://doi.org/10.1016/0021-9517(88)90019-X

    Article  CAS  Google Scholar 

  11. Nicolas K, Olivier R, Keller V (2005) Diamond Relat Mater 14:1353. doi:https://doi.org/10.1016/j.diamond.2005.01.026

    Article  Google Scholar 

  12. Jin GQ, Guo XY (2003) Micropor Mesopor Mater 60:207. doi:https://doi.org/10.1016/S1387-1811(03)00378-0

    Article  CAS  Google Scholar 

  13. Li JW, Tian JM, Dong LM (2000) J Eur Ceram Soc 77:1853

    Article  Google Scholar 

  14. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309. doi:https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  15. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373. doi:https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  16. Seo WS, Koumoto K (1998) J Am Ceram Soc 81:1255

    Article  CAS  Google Scholar 

  17. Puneet G, William W, Fan LS (2004) Ind Eng Chem Res 43:4732. doi:https://doi.org/10.1021/ie034244e

    Article  Google Scholar 

  18. Simkovic I, Surina I, Vrican M (2003) J Anal Appl Pyrol 70:493. doi:https://doi.org/10.1016/S0165-2370(03)00007-X

    Article  CAS  Google Scholar 

  19. Zheng Y, Zheng Y, Lin LX, Ni J, Kei KM (2006) Scripta Mater 55:883. doi:https://doi.org/10.1016/j.scriptamat.2006.07.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No.20576021), the Natural Science Foundation of Fujian Province of China (No.E0710004), Science and Technology Priority Project of Fujian Province (2005HZ01-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Zheng, Y., Wang, R. et al. Synthesis and characterization of high surface area silicon carbide by dynamic vacuum carbothermal reduction. J Mater Sci 43, 5331–5335 (2008). https://doi.org/10.1007/s10853-008-2778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2778-8

Keywords

Navigation