Skip to main content
Log in

Production, properties and application prospects of bulk nanostructured materials

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fundamental mechanisms of grain refinement during equal-channel angular pressing (ECAP) and multiple isothermal forging (MIF) are analyzed and compared. Based on this analysis, deformation methods of nanostructuring are classified into severe plastic deformation and mild plastic deformation methods. It is demonstrated that MIF is a versatile method allowing for a production of bulk and sheet nanostructured semi-products with grain size down to 50 nm and applicable to various metals and alloys. Novel mechanical properties of bulk nanostructured materials produced by this method are presented. The ways of their structural and functional applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SPD:

Severe plastic deformation

ECAP:

Equal-channel angular pressing

MIF:

Multiple isothermal forging

References

  1. Altan BS (ed) (2006) Severe plastic deformation: toward bulk production of nanostructured materials. Nova Science, New York

    Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Progr Mater Sci 51:881

    Article  CAS  Google Scholar 

  4. Valiakhmetov OR, Galeev RM, Salishchev GA (1990) Phys Met Metallogr 72:204

    Google Scholar 

  5. Imayev RM, Imayev VM (1991) Scr Metall Mater 25:2041

    Article  CAS  Google Scholar 

  6. Salishchev GA, Valiakhmetov OR, Galeev RM (1993) J Mater Sci 28:2898. doi:https://doi.org/10.1007/BF00354692

    Article  CAS  Google Scholar 

  7. Imayev RM, Imayev VM, Salishchev GA (1992) J Mater Sci 27:4465. doi:https://doi.org/10.1007/BF00541580

    Article  Google Scholar 

  8. Rybin VV (1986) Large plastic strains and fracture of metals. Metallurgiya Publishers, Moscow (in Russian)

    Google Scholar 

  9. Hansen N, Jensen DJ (1999) Philos Trans R Soc Lond A 357:1447

    Article  CAS  Google Scholar 

  10. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  11. Gholinia A, Prangnell PB, Markushev MV (2000) Acta Mater 48:1115

    Article  CAS  Google Scholar 

  12. Driver JH (2004) Scr Mater 51:819

    Article  CAS  Google Scholar 

  13. Huang WH, Yu CY, Kao PW, Chang CP (2004) Mater Sci Eng A 366:221

    Article  Google Scholar 

  14. Kaibyshev OA (1992) Superplasticity of alloys, intermetallics and ceramics. Springer-Verlag, Berlin

    Book  Google Scholar 

  15. Zherebtsov SV, Salishchev GA, Galeyev RM, Valiakhmetov OR, Mironov SY, Semiatin SL (2004) Scr Mater 51:1147

    Article  CAS  Google Scholar 

  16. Poirier JP (1976) Plasticité à haute temperature des solids cristallins. Eyrolles, Paris

    Google Scholar 

  17. Galeev RM, Valiakhmetov OR, Salishchev GA (1990) Russian Metall 4:97

    Google Scholar 

  18. Salishchev G, Zaripova R, Galeev R, Valiakhmetov O (1995) NanoStr Mater 6:913

    Article  Google Scholar 

  19. Salishchev GA, Valiakhmetov OR, Galeev RM, Malysheva SP (1996) Russian Metall 4:86

    Google Scholar 

  20. Zherebtsov SV, Galeev RM, Salishchev GA, Myshlaev MM (1999) Phys Met Metallogr 87(4):66

    CAS  Google Scholar 

  21. Valitov VA, Salishchev GA, Mukhtarov ShKh (1994) Russian Metall 3:127

    Google Scholar 

  22. Valitov VA, Kaibyshev OA, Mukhtarov ShKh, Gajnutdinova NR (2001) In: Gottstein G, Molodov DA (eds) Recrystallization and grain growth, vol 1. Springer-Verlag, Berlin, p 563

    Google Scholar 

  23. Valitov VA, Mukhtarov ShKh, YuA Raskulova (2004) Phys Metals Metallogr 102(1):97

    Article  Google Scholar 

  24. Imayev R, Shagiev M, Salishchev G, Imayev V, Valitov V (1996) Scripta Mater 34:985

    Article  CAS  Google Scholar 

  25. Zherebtsov SV, Salishchev GA, Galeyev RM, Valiakhmetov OR, Mironov SY, Chen TF (2004) Scripta Mater 51:1147

    Article  CAS  Google Scholar 

  26. Valiev RZ, Alexandrov IV (2007) Bulk nanostructured materials. Academkniga, Moscow

    Google Scholar 

  27. Salishchev GA, Galeev RM, Malysheva SP, Valiakhmetov OR (1997) Mater Sci Forum 243–245:585

    Google Scholar 

  28. Salishchev GA, Valiakhmetov OR, Galeyev RM, Froes FH (2004) In: Lutjering G, Albrecht O (eds) Ti-2003, science and technology, vol 2. Wiley-VCH Verlag, Weinheim, p 569

    Google Scholar 

  29. Lutfullin RR, Kaibyshev OA, Valiakhmetov OP, Mukhametrakhimov MKh, Safiullin RV, Mulyukov RR (2003) J Adv Mater 4:21 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nazarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyukov, R.R., Imayev, R.M. & Nazarov, A.A. Production, properties and application prospects of bulk nanostructured materials. J Mater Sci 43, 7257–7263 (2008). https://doi.org/10.1007/s10853-008-2777-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2777-9

Keywords

Navigation