Skip to main content
Log in

Structure and properties of (1 − x)Pb(Mg1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 solid solution ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The widely used piezoelectric Pb(Zr1−xTix)O3 ceramics have been known to have Zr4+ and Ti4+ randomly distributed on the B-site lattice in the ABO3 perovskite structure. In this study, we attempted to develop long range 1:1 B-site cation order by forming the solid solution of (1 − x)Pb(Mg1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 (x ≥ 0.60). High temperature X-ray diffraction tests indicate that the cation order is embedded in the structural order. The solid solution ceramics appear to have a non-cubic paraelectric phase above their Curie temperatures. The competition between the antiferroelectric order in Pb(Mg1/2W1/2)O3 and the ferroelectric order in Pb(Zr0.5Ti0.5)O3 leads to the relaxor ferroelectric behavior in the solid solution. Since the temperature at dielectric maximum, T m, is significantly above room temperature, regular polarization versus electric field hysteresis loops are recorded in these compositions at room temperature. In addition, these ceramics show very good piezoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mitchell RH (2002) Perovskite: modern and ancient. Almaz Press, Ontario

    Google Scholar 

  2. Smolenskii GA (1970) J Phys Soc Jpn 28(Suppl):26

    Google Scholar 

  3. Cross LE (1994) Ferroelectrics 151:305

    Article  CAS  Google Scholar 

  4. Chen J, Chan HM, Harmer MP (1989) J Am Ceram Soc 72:593. doi:https://doi.org/10.1111/j.1151-2916.1989.tb06180.x

    Article  CAS  Google Scholar 

  5. Davis PK, Akbas MA (2000) J Phys Chem Solids 61:159. doi:https://doi.org/10.1016/S0022-3697(99)00275-9

    Article  Google Scholar 

  6. Zhao XH, Qu WG, He H, Vittayakorn N, Tan X (2006) J Am Ceram Soc 89:202. doi:https://doi.org/10.1111/j.1551-2916.2005.00675.x

    Article  CAS  Google Scholar 

  7. Setter N, Cross LE (1980) J Appl Phys 51:4356. doi:https://doi.org/10.1063/1.328296

    Article  CAS  Google Scholar 

  8. Zaslavskii AI, Bryzhina MF (1963) Sov Phys Crystallogr 7:577

    Google Scholar 

  9. Baba-Kishi KZ, Cressey G, Cernik RJ (1992) J Appl Cryst 25:477. doi:https://doi.org/10.1107/S0021889892001110

    Article  CAS  Google Scholar 

  10. Baldinozzi G, Sciau P, Buffat PA (1993) Solid State Commun 86:541. doi:https://doi.org/10.1016/0038-1098(93)90135-A

    Article  CAS  Google Scholar 

  11. Choo WK, Kim HJ, Yang JH, Lim H, Lee JY, Kwon JR et al (1993) Jpn J Appl Phys 32:4249. doi:https://doi.org/10.1143/JJAP.32.4249

    Article  CAS  Google Scholar 

  12. Baldinozzi G, Sciau P, Pinot M, Grebille D (1995) Acta Crystallogr B 51:668. doi:https://doi.org/10.1107/S0108768194014047

    Article  Google Scholar 

  13. Yasuda N, Fujimoto S, Yoshimura T (1986) J Phys C Solid State Phys 19:1055. doi:https://doi.org/10.1088/0022-3719/19/7/016

    Article  CAS  Google Scholar 

  14. Baldinozzi G, Sciau P, Bulou A (1995) J Phys Condens Matter 7:8109. doi:https://doi.org/10.1088/0953-8984/7/42/008

    Article  CAS  Google Scholar 

  15. Ardelean I, Barbur I, Timar V, Borodi Gh (2003) Mod Phys Lett B 17:1135. doi:https://doi.org/10.1142/S021798490300613X

    Article  CAS  Google Scholar 

  16. Akbas MA, Davies PK (1997) J Am Ceram Soc 80:2933. doi:https://doi.org/10.1111/j.1151-2916.1997.tb03214.x

    Article  CAS  Google Scholar 

  17. Juhas P, Davies PK (2004) J Am Ceram Soc 87:2086

    Article  CAS  Google Scholar 

  18. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  19. Shannon RD (1976) Acta Crystallogr A 32:751. doi:https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  20. Uchino K, Nomura S (1982) Ferroelectr Lett 44:55. doi:https://doi.org/10.1080/07315178208201875

    Article  CAS  Google Scholar 

  21. Vittayakorn N, Rujijanagul G, Tan X, Marquardt MA, Cann DP (2004) J Appl Phys 96:5103. doi:https://doi.org/10.1063/1.1796511

    Article  CAS  Google Scholar 

  22. Chen IW (2000) J Phys Chem Solids 61:197. doi:https://doi.org/10.1016/S0022-3697(99)00282-6

    Article  CAS  Google Scholar 

  23. Lu CH (1996) J Mater Sci 31:699. doi:https://doi.org/10.1007/BF00367888

    Article  CAS  Google Scholar 

  24. Stringer CJ, Randall CA (2007) J Am Ceram Soc 90:1802. doi:https://doi.org/10.1111/j.1551-2916.2007.01640.x

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation through the CAREER grant DMR-0346819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D., Zhao, X., Besser, M.F. et al. Structure and properties of (1 − x)Pb(Mg1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 solid solution ceramics. J Mater Sci 43, 5258–5264 (2008). https://doi.org/10.1007/s10853-008-2772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2772-1

Keywords

Navigation