Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7320–7325 | Cite as

Influence of rolling direction on strength and ductility of aluminium and aluminium alloys produced by accumulative roll bonding

  • Irena Topic
  • Heinz Werner Höppel
  • Mathias Göken
Ultrafine-Grained Materials

Abstract

Sheets from commercial purity aluminium AA1050 and aluminium alloy AA6016 were processed by accumulative roll bonding to obtain an ultrafine-grained microstructure. The accumulative roll bonded samples showed a significant increase in specific strength paired with high ductility. Despite a strongly elongated grain structure, tensile testing of samples oriented 45° to the rolling direction revealed considerable improvement in elongation to failure compared to the samples oriented parallel to the rolling direction. From hydraulic bulge tests, it was observed that the accumulative roll bonded samples reached higher burst pressures and slightly lower equivalent strains in comparison to the as-received conventionally grain-sized samples. This behaviour reflects the extraordinary mechanical properties of the ultrafine-grained materials and indicates promising metal sheet formability.

Keywords

Rolling Direction Equal Channel Angular Pressing Accumulative Roll Bonding Aluminium Alloy AA6016 Bulge Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank the German Research Association (Deutsche Forschungsgemeinschaft DFG) for financial support within SFB 396, the Chair of Manufacturing Technology at the Friedrich-Alexander University Erlangen-Nürnberg, for the support and cooperation regarding bulge testing and W. Skrotzki at the Technical University of Dresden for conducting the texture measurements.

References

  1. 1.
    Horita Z (2005) Proceedings of the 3rd International Conference on nanomaterials by severe plastic deformation, Trans Tech Publications Ltd, 2005Google Scholar
  2. 2.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221. doi: 10.1016/S1359-6462(98)00302-9 CrossRefGoogle Scholar
  3. 3.
    Tsuji N, Saito Y, Lee S-H, Minamino Y (2003) Adv Eng Mater 5:338. doi: 10.1002/adem.200310077 CrossRefGoogle Scholar
  4. 4.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  5. 5.
    Valiev RZ, Zehetbauer MJ, Estrin Y, Höppel HW, Ivanisenko Y, Hahn H et al (2007) Adv Eng Mater 9:527. doi: 10.1002/adem.200700078 CrossRefGoogle Scholar
  6. 6.
    Lapovok R, Mc Kenzie PWJ, Thomson PF, Semiatin SL (2007) Int J Mater Res 98:325Google Scholar
  7. 7.
    Höppel HW, May J, Göken M (2004) Adv Eng Mater 6(9):781. doi: 10.1002/adem.200306582 CrossRefGoogle Scholar
  8. 8.
    Topic I, Höppel HW, Göken M (2007) Int J Mater Res 98:4Google Scholar
  9. 9.
    Topic I, Höppel HW, Staud D, Merklein M, Geiger M, Goken M (submitted to) Adv Eng MaterGoogle Scholar
  10. 10.
    Skrotzki W, Hünsche I, Hüttenrauch J, Oertel CG, Brokmeier HG, Höppel HW, et al (2007) Accepted in Texture, Stress and MicrostructureGoogle Scholar
  11. 11.
    Hannon A, Tiernan P (2008) J Mater Process Technol 198:1. doi: 10.1016/j.jmatprotec.2007.10.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Irena Topic
    • 1
  • Heinz Werner Höppel
    • 1
  • Mathias Göken
    • 1
  1. 1.Department of Materials Science and Engineering, Institute I: General Materials PropertiesUniversity Erlangen-NürnbergErlangenGermany

Personalised recommendations