Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5982–5988 | Cite as

Catalytic behavior of niobia species on oxidation reactions: insights from experimental and theoretical models

  • Teodorico C. Ramalho
  • Luiz C. A. Oliveira
  • Kele T. G. Carvalho
  • Eugênio F. Souza
  • Elaine F. F. da Cunha
  • Marcelo Nazzaro
Article

Abstract

This paper describes the preparation and use of a new class of material based on synthetic Niobia as catalysts in oxidizing reactions of organic compounds in aqueous medium. The reaction chemicals were carried out in presence of hydrogen peroxide (H2O2). The material was characterized with X-ray diffraction, XPS, and UV–Vis measurements. The organic molecule methylene-blue was used in decomposition study as probe contaminant. The analysis using the ESI-MS technique showed complete oxidation observed through different intermediates. This suggests the use of Niobia species as efficient Fenton-like catalyst in degradation reactions. Theoretical quantum DFT calculations were carried out in order to understand the degradation mechanism.

Keywords

Methylene Blue Niobia Nb2O5 Natural Bond Orbital Niobium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We are grateful to the FAPEMIG and CNPq Brazilian agencies for funding part of this work and CENAPAD-SP for the computational facilities.

References

  1. 1.
    Tanabe K (2003) Catal Today 78:65. doi: 10.1016/S0920-5861(02)00343-7 CrossRefGoogle Scholar
  2. 2.
    Tanabe K, Okazak SI (1995) Appl Catal 133:191. doi: 10.1016/0926-860X(95)00205-7 CrossRefGoogle Scholar
  3. 3.
    Pereira EB, Pereira MM, Lam YL, Perez CAC, Schmal M (2000) Appl Catal A Gen 197:99CrossRefGoogle Scholar
  4. 4.
    Petre AL, Perdigón-Melón JA, Gervasini A, Auroux A (2003) Catal Today 78:377CrossRefGoogle Scholar
  5. 5.
    Nowak I, Ziolek M (1999) Chem Rev 99:3603CrossRefGoogle Scholar
  6. 6.
    Lu M, Chen J, Huang H (2002) Chemosphere 46:131CrossRefGoogle Scholar
  7. 7.
    Cornell RM, Schwertmann U (2003) The iron oxides, 3rd edn. Weinheim-VHC, New YorkGoogle Scholar
  8. 8.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.9. Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  9. 9.
    Da Cunha EFF, De Alencastro RB, Ramalho TC (2004) J Theor Comp Chem 31:1Google Scholar
  10. 10.
    da Silva RR, Ramalho TC, Santos JM, Figueroa-Villar JD (2006) J Phys Chem A 110:1031CrossRefGoogle Scholar
  11. 11.
    Barone V, Cossi M, Tomasi J (1998) J Comp Chem 19:404CrossRefGoogle Scholar
  12. 12.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999CrossRefGoogle Scholar
  13. 13.
    Wang P, Zhang YL, Streitwieser A (1991) J Am Chem Soc 113:55CrossRefGoogle Scholar
  14. 14.
    Reed E, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  15. 15.
    Neubauer-Guenther P, Giesen TF, Schlemmer S (2007) J Chem Phys 127:014313CrossRefGoogle Scholar
  16. 16.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154CrossRefGoogle Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian03, revision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  18. 18.
    Oliveira LCA, Ramalho TC, Gonçalves M, Cereda F, Carvalho KT, Nazzarro MS, Sapag K (2007) Chem Phys Lett 446:133CrossRefGoogle Scholar
  19. 19.
    Oliveira LCA, Ramalho TC, Gonçalves M, Sapag K (2007) Appl Cat A Gen 316:117CrossRefGoogle Scholar
  20. 20.
    El-Taher S, Hilal RH (2007) Int J Quantum Chem 2001(20):242Google Scholar
  21. 21.
    Fuentealba P, Preuss H, Stoll H, Szentpaly LV (1989) Chem Phys Lett 89:418CrossRefGoogle Scholar
  22. 22.
    Bayot D, Tinant B, Devillers M (2003) Catal Today 78:439CrossRefGoogle Scholar
  23. 23.
    Ramalho TC, Taft CA (2005) J Chem Phys 123:054319CrossRefGoogle Scholar
  24. 24.
    Ramalho TC, Martins TLC, Borges LEP, Figueroa-Villar JD (2003) Int J Quantum Chem 95:267CrossRefGoogle Scholar
  25. 25.
    Wang X, Houk KN, Spichty M, Wirth T (1999) J Am Chem Soc 121:8567CrossRefGoogle Scholar
  26. 26.
    Rosenfield RE, Pathasatathy R (1977) J Am Chem Soc 99:4860CrossRefGoogle Scholar
  27. 27.
    Wirth T, Fragale G, Spichty M (1998) J Am Chem Soc 120:3376CrossRefGoogle Scholar
  28. 28.
    Haxhillazi G, Haeuseler H (2004) J Solid State Chem 177:3045CrossRefGoogle Scholar
  29. 29.
    Selezneva KI, Nisel’son LA (1968) Russ J Inorg Chem 13:45Google Scholar
  30. 30.
    Boehm G (1926) Z Krist 63:319Google Scholar
  31. 31.
    Shchelokov RN, Traggeim EN, Varfolomeev MB, Michnik MA, Morozova SV (1972) Russ J Inorg Chem 17:1273Google Scholar
  32. 32.
    Burcham LJ, Datka J, Wachs IE (1999) J Phys Chem B 103:6015CrossRefGoogle Scholar
  33. 33.
    Bayot D, Devillers M (2006) Coord Chem Rev 250:2610CrossRefGoogle Scholar
  34. 34.
    Ramalho TC, de Alencastro RB, La-Scaleac MA, Figueroa-Villar JD (2004) Biophys Chem 110:267CrossRefGoogle Scholar
  35. 35.
    Singh UC, Kollman PA (1984) J Comput Chem 5:129CrossRefGoogle Scholar
  36. 36.
    Goldman P, Koch RL, Yeung TC (1986) Biochem Pharmacol 35:43CrossRefGoogle Scholar
  37. 37.
    Milas I, Nascimento MAC (2003) Chem Phys Lett 373:379CrossRefGoogle Scholar
  38. 38.
    Mangham RI, Petuskey WT (2008) J Mater Sci 43:621. doi: 10.1007/s10853-007-2710-0 CrossRefGoogle Scholar
  39. 39.
    Salzneer U, Schleyer PV (1993) J Am Chem Soc 115:10231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Teodorico C. Ramalho
    • 1
  • Luiz C. A. Oliveira
    • 1
  • Kele T. G. Carvalho
    • 1
  • Eugênio F. Souza
    • 1
  • Elaine F. F. da Cunha
    • 1
  • Marcelo Nazzaro
    • 2
  1. 1.Departamento de QuímicaUniversidade Federal de LavrasLavrasBrazil
  2. 2.Laboratorio de Ciencias de Superficies y Medios Porosos, Departamento de FísicaUNSLSan LuisArgentina

Personalised recommendations