Skip to main content

Advertisement

Log in

Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanosized tungsten carbide powder was prepared by a thermal plasma process using tungsten hexachloride (WCl6) as the precursor. The reduction and carburization of the vaporized precursor by methane–hydrogen mixtures produced nanosized WC1−x powder, which sometimes contained WC and/or W2C phase. The effects of the molar ratio of reactant gases, plasma torch power, the flow rate of plasma gas, and the addition of secondary plasma gas (H2) on the product composition and grain size were investigated. The tungsten carbide powder produced by the plasma process showed particle sizes less than 20 nm. The produced powder was heated in hydrogen to fully carburize the WC1−x, and W2C phases to the WC phase as well as to remove excess carbon in the product. Finally, WC powder with particle size less than 100 nm was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Upadhaya GS (2002) Cemented tungsten carbide. Noyes Publications, New York

    Google Scholar 

  2. Petersson A, Ågren J (2004) Acta Mater 52:1847. doi:https://doi.org/10.1016/j.actamat.2003.12.024

    Article  CAS  Google Scholar 

  3. Fang Z, Maheshwari P, Wang X et al (2005) Inter J Refract Metab Hard Mater 23:249. doi:https://doi.org/10.1016/j.ijrmhm.2005.04.014

    Article  CAS  Google Scholar 

  4. Lee G-H, Kang S (2006) J Alloy Comp 419:281. doi:https://doi.org/10.1016/j.jallcom.2005.09.060

    Article  CAS  Google Scholar 

  5. Wahlberg S, Grenthe I, Muhammed M (1997) Nanostruct Mater 9:105. doi:https://doi.org/10.1016/S0965-9773(97)00029-9

    Article  CAS  Google Scholar 

  6. Zhu YT, Manthiram A (1996) Compos Part B Eng 27:407

    Article  Google Scholar 

  7. Fu L, Cao LH, Fan YS (2001) Scr Mater 44:1061. doi:https://doi.org/10.1016/S1359-6462(01)00668-6

    Article  CAS  Google Scholar 

  8. Nersisyan HH, Won HI, Won CW et al (2005) Mater Chem Phys 94:153. doi:https://doi.org/10.1016/j.matchemphys.2005.04.024

    Article  CAS  Google Scholar 

  9. Wu XY, Zhang W, Wang W et al (2004) J Mater Res 19:2240. doi:https://doi.org/10.1557/JMR.2004.0324

    Article  CAS  Google Scholar 

  10. Zawrah MF (2007) Ceram Int 33:155. doi:https://doi.org/10.1016/j.ceramint.2005.09.010

    Article  CAS  Google Scholar 

  11. Shi XL, Shao GQ, Duan XL et al (2006) Mater Charact 57:358. doi:https://doi.org/10.1016/j.matchar.2006.02.013

    Article  CAS  Google Scholar 

  12. McCandlish LE, Kear BH, Kim BK (1992) Nanostruct Mater 1:119. doi:https://doi.org/10.1016/0965-9773(92)90063-4

    Article  CAS  Google Scholar 

  13. Ban Z-G, Shaw LL (2002) J Mater Sci 37:3397. doi:https://doi.org/10.1023/A:1016553426227

    Article  CAS  Google Scholar 

  14. Hasanpour A, Mozaffari M, Amighian J (2007) Physica B (Amsterdam) 387:298. doi:https://doi.org/10.1016/j.physb.2006.04.039

    Article  CAS  Google Scholar 

  15. Liu S, Huang Z-L, Liu G et al (2006) Inter J Refract Metab Hard Mater 24:461. doi:https://doi.org/10.1016/j.ijrmhm.2005.10.001

    Article  CAS  Google Scholar 

  16. Mi S, Courtney TH (1997) Scr Mater 38:171. doi:https://doi.org/10.1016/S1359-6462(97)00410-7

    Article  Google Scholar 

  17. Chang W, Skandan G, Hahn H et al (1994) Nanostruct Mater 4:345. doi:https://doi.org/10.1016/0965-9773(94)90144-9

    Article  CAS  Google Scholar 

  18. Tong L, Reddy RG (2005) Scr Mater 52:1253. doi:https://doi.org/10.1016/j.scriptamat.2005.02.033

    Article  CAS  Google Scholar 

  19. Moriysohi Y, Futaki M, Komatsu S et al (1997) J Mater Sci Lett 16:347. doi:https://doi.org/10.1023/A:1018586009506

    Article  CAS  Google Scholar 

  20. Fukumasa O, Fujiwara T (2003) Thin Solid Films 435:33. doi:https://doi.org/10.1016/S0040-6090(03)00371-7

    Article  CAS  Google Scholar 

  21. Swihart MT (2003) Curr Opin Colloid In 8:127. doi:https://doi.org/10.1016/S1359-0294(03)00007-4

    Article  CAS  Google Scholar 

  22. Gao Y, Guo X-P, Wei R (2006) Surf Coat Tech 201:2829. doi:https://doi.org/10.1016/j.surfcoat.2006.05.035

    Article  CAS  Google Scholar 

  23. Tong L, Reddy RG (2006) Mater Res Bull 41:2303. doi:https://doi.org/10.1016/j.materresbull.2006.04.021

    Article  CAS  Google Scholar 

  24. Mohai I, Gál L, Szépvölgyi J et al (2007) J Eur Ceram Soc 27:941. doi:https://doi.org/10.1016/j.jeurceramsoc.2006.04.128

    Article  CAS  Google Scholar 

  25. Hojo J, Oku T, Kato A (1978) J Less Common Met 59:85. doi:https://doi.org/10.1016/0022-5088(78)90114-5

    Article  CAS  Google Scholar 

  26. Fitzsimmons M, Sarin VK (1995) Surf Coat Tech 76:250

    Article  Google Scholar 

  27. Kim JC, Kim BK (2004) Scr Mater 50:969. doi:https://doi.org/10.1016/j.scriptamat.2004.01.015

    Article  CAS  Google Scholar 

  28. Tang X, Haubner R, Lux B et al (1995) J Phys II 5:1013. doi:https://doi.org/10.1051/jp3:1995174

    Google Scholar 

  29. Won C-W, Chun B-S, Sohn HY (1993) J Mater Res 8:2702. doi:https://doi.org/10.1557/JMR.1993.2702

    Article  CAS  Google Scholar 

  30. Leclercq G, Kamal M, Giraudon JM et al (1996) J Catal 158:142. doi:https://doi.org/10.1006/jcat.1996.0015

    Article  CAS  Google Scholar 

  31. Kelly CM, Garg D, Dyer PN (1992) Thin Solid Films 219:103. doi:https://doi.org/10.1016/0040-6090(92)90729-U

    Article  CAS  Google Scholar 

  32. Medeiros FFP, Oliveira SAD, Souza CPD et al (2001) Mater Sci Eng A 315:58. doi:https://doi.org/10.1016/S0921-5093(01)01214-X

    Article  Google Scholar 

  33. Gao L, Kear BH (1995) Nanostruct Mater 5:555. doi:https://doi.org/10.1016/0965-9773(95)00265-G

    Article  CAS  Google Scholar 

  34. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Pub. Co, London

  35. Sara RW (1965) J Am Ceram Soc 48:253

    Google Scholar 

  36. Choi SI, Nam JS, Lee CM et al (2006) Curr Appl Phys 6:224. doi:https://doi.org/10.1016/j.cap.2005.07.045

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported by the US Department of Energy under Award No. DE-FC36-04GO14041 with cost sharing by Kennametal and Smith International and technical collaboration with Idaho National Laboratory. The authors wish to thank Prof. Patrick R. Taylor of Colorado School of Mines for his help with the selection, design, and initial operation of the plasma reactor system. Thanks also go to Mr. Robert W. Byrnes of the University of Utah for his competent work with the design and repair of the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, T., Sohn, H.Y., Hwang, K.S. et al. Tungsten carbide nanopowder by plasma-assisted chemical vapor synthesis from WCl6–CH4–H2 mixtures. J Mater Sci 43, 5185–5192 (2008). https://doi.org/10.1007/s10853-008-2741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2741-8

Keywords

Navigation