Journal of Materials Science

, Volume 43, Issue 14, pp 4886–4891 | Cite as

Electrical-thermal switching effect in high-density polyethylene/graphite nanosheets conducting composites

  • Lichun Zhou
  • Jinshan Lin
  • Hongfei Lin
  • Guohua Chen


The nonlinear response in high-density polyethylene/graphite nanosheets conducting composites under increasing applied voltage is investigated. Under sufficient applied constant voltage, the resistance increases initially due to Joule heating effect and then eventually reaches a steady value with a characteristic thermal relaxation time τ h , which decreases as the applied field increases. The switch value, namely the ratio of the resistance under steady condition to the resistance of sample in linear regime, gradually increases with the increasing applied field. The threshold voltage (V 0) at which the resistance start to increase with time scales with linear regime resistance (R 0) of the sample as \( V_{0} \sim R^{x}_{0} ,\) with the exponent = 0.78 ± 0.05. All the curves of R/R 0 vs. V/V 0 collapse to a similar curve with the function R/R 0 = 1 + α(V/V 0) θ . The results reveal that the threshold voltage value decreases with increasing graphite nanosheets content in the composites.


Threshold Voltage Percolation Threshold Conducting Filler Switching Effect Conducting Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was sponsored by National Natural Science Foundation of China (No. 20574025), National Natural Science of Fujian Province (2005HZ01-4), and the Key Laboratory of Functional Materials for FUJIAN Higher Education. Thanks are given to Professor K.K. Bardhan from SAHA Institute of Nuclear Physics, India for his kind help in nonlinear conduction theory and measurement techniques.


  1. 1.
    Chakrabarti BK, Benguigui L (1997) Statistical physics of fracture and breakdown in disordered systems. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Heaney MB (1996) Appl Phys Lett 69:2602. doi: 10.1063/1.117713 CrossRefGoogle Scholar
  3. 3.
    Oakes JA, Sandberg CL (1973) IEEE Trans Ind A l9:462CrossRefGoogle Scholar
  4. 4.
    Doljack FA (1981) IEEE Trans Compon Hybrids Manuf Technol 4:372. doi: 10.1109/TCHMT.1981.1135838 CrossRefGoogle Scholar
  5. 5.
    Gefen Y, Shih WH, Laibowitz RB (1986) Phys Rev Lett 57:3097. doi: 10.1103/PhysRevLett.57.3097 CrossRefGoogle Scholar
  6. 6.
    Chakrabarty RK, Bardhan KK, Basu A (1991) Phys Rev B 44:6773. doi: 10.1103/PhysRevB.44.6773 CrossRefGoogle Scholar
  7. 7.
    Bardhan KK, Chakrabarty RK (1992) Phys Rev Lett 69:2559. doi: 10.1103/PhysRevLett.69.2559 CrossRefGoogle Scholar
  8. 8.
    Lu W, Wu DJ, Chen GH (2006) J Mater Sci 41:1785. doi: 10.1007/s10853-006-3946-3 CrossRefGoogle Scholar
  9. 9.
    Lamaignere L, Carmona F, Sornette D (1996) Phys Rev Lett 77:2738. doi: 10.1103/PhysRevLett.77.2738 CrossRefGoogle Scholar
  10. 10.
    Mukherjee CD, Bardhan KK, Heaney MB (1999) Phys Rev Lett 83:1215. doi: 10.1103/PhysRevLett.83.1215 CrossRefGoogle Scholar
  11. 11.
    Duggal AR, Levinson LM (1997) Appl Phys Lett 71:1939. doi: 10.1063/1.119987 CrossRefGoogle Scholar
  12. 12.
    Duggal AR, Sun FG (1998) J Appl Phys 83:2046. doi: 10.1063/1.366937 CrossRefGoogle Scholar
  13. 13.
    Duggal AR, Sun FG (1998) J Appl Phys 84:5720. doi: 10.1063/1.368837 CrossRefGoogle Scholar
  14. 14.
    Song YH, Yi XS, Pan Y (2000) J Mater Sci Lett 19:299. doi: 10.1023/A:1006702411542 CrossRefGoogle Scholar
  15. 15.
    Lu W, Lin HF, Chen GH (2007) J Polym Sci B Polym Phys 45:860. doi: 10.1002/polb.21111 CrossRefGoogle Scholar
  16. 16.
    Heaney MB (1996) Appl Phys Lett 69:2602. doi: 10.1063/1.117713 CrossRefGoogle Scholar
  17. 17.
    Chen GH, Weng WG, Wu DJ (2004) Carbon 42:753. doi: 10.1016/j.carbon.2003.12.074 CrossRefGoogle Scholar
  18. 18.
    Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  19. 19.
    Mukherjee CD, Bardhan KK (2003) Phys Rev Lett 91:025702. doi: 10.1103/PhysRevLett.91.025702 CrossRefGoogle Scholar
  20. 20.
    Havlin S, Ben-Avraham D (1987) Adv Phys 36:695. doi: 10.1080/00018738700101072 CrossRefGoogle Scholar
  21. 21.
    Ghosh M, Chakrabarti BK, Majumdar KK, Chakrabarti RN (1990) Phys Rev B 41:731. doi: 10.1103/PhysRevB.41.731 CrossRefGoogle Scholar
  22. 22.
    Pennetta C, Reggiani L, Trwfan G (2002) Phys Rev E Stat Nonlin Soft Matter Phys 65:066119. doi: 10.1103/PhysRevE.65.066119 Google Scholar
  23. 23.
    Azulay D, Eylon M, Eshkenazi OD et al (2003) Phys Rev Lett 90:236601. doi: 10.1103/PhysRevLett.90.236601 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lichun Zhou
    • 1
  • Jinshan Lin
    • 1
  • Hongfei Lin
    • 1
  • Guohua Chen
    • 1
  1. 1.Institute of Polymer & NanomaterialsHuaqiao UniversityQuanzhouChina

Personalised recommendations