Skip to main content
Log in

Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Atomic simulation was applied to investigate the interface interactions and mechanical properties of β-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX)-based polymer-bonded explosive (PBX) with Estane 5703. The interface structure of HMX (100) crystal surface with Estane 5703 was analyzed using pair correlation function (PCF), and the interfacial binding energies between them were calculated. It is shown that there exist hydrogen bonds and electrostatic interactions on the interface. By calculating and comparing the bonds lengths and distributions for possible initial bonds fractured in detonation, it is known that the interactions do not affect the stability of the PBX. Moreover, the elastic constants for HMX and the HMX-based PBX were computed using static elastic constants analysis method, and the engineering moduli and Poisson ratios were derived by Reuss average. Based on the value of Cauchy pressure, it is indicated that the ductibility of crystalline HMX can be effectively improved by blending the polymer in small amount. The relevancy to shockwave stability for this PBX in detonation was discussed finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gibbs TR, Popolato A, (eds) (1980) LASL explosive property data. University of California Press, Berkeley

  2. Dong HS, Zhou FF (1989) High energy explosives and correlative physical properties. Science Press, Beijing

    Google Scholar 

  3. Sun YB, Hui JM, Cao XM (1995) Military use blended explosives. Weapon Industry Press, Beijing

    Google Scholar 

  4. Geng JF, Lao YL (1991) J Beijing Univ Sci Tech 11:87

    Google Scholar 

  5. Van Oss CJ, Chaudhury MK, Good RJ (1988) Chem Rev 88:927

    Article  Google Scholar 

  6. Xu QL (1993) Energetic Mater (in Chinese) 1:1

  7. Song HJ, Dong HS, Hao Y (2000) Energetic Mater (in Chinese) 8:104

    CAS  Google Scholar 

  8. Xiao HM, Li JS, Dong HS (2001) J Phys Org Chem 14(9):644

    Article  CAS  Google Scholar 

  9. Li JS, Xiao HM, Dong HS (2000) Explod Shock (in Chinese) 20:221

    CAS  Google Scholar 

  10. Xiao HM, Ju XH (2003) Intermolecular interactions in energetic systems (in Chinese). Science Press, Beijing

    Google Scholar 

  11. Sewell TD, Menicoff R, Bedrov D, Simith GD (2003) J Chem Phys 119:7417

    Article  CAS  Google Scholar 

  12. Gee RH, Roszak S, Balasubramanian K, Fried LE (2004) J Chem Phys 120:7059

    Article  CAS  Google Scholar 

  13. Yang XZ (2002) Molecular simulation and polymer materials (in Chinese). Science Press, Beijing

    Google Scholar 

  14. Milchev A, Binder K (1996) Macromolecules 29(1):343

    Article  CAS  Google Scholar 

  15. Wang XL, Lu ZY, Li ZS, Sun CC (2005) J Phys Chem B 109:17644

    Article  CAS  Google Scholar 

  16. Xiao JJ, Yong GY, Ji GF, Xiao HM (2005) Chin Sci Bull 50:21

    Article  CAS  Google Scholar 

  17. Xiao JJ, Huang YC, Hu YJ, Xiao HM (2005) Sci China B 48:504

    Article  CAS  Google Scholar 

  18. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) J Phys Chem B 110:7203

    Article  CAS  Google Scholar 

  19. Dobratz BM (1981) Report No. UCRL-52997, 16 March

  20. Sun H (1998) J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  21. Choi CS, Boutin HP (1970) Acta Crystallogr B 26:1235

    Article  CAS  Google Scholar 

  22. Chen CL, Chen HL, Lee CL, Shih JH (1994) Macromolecules 27:2087

    Article  CAS  Google Scholar 

  23. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  24. Andersen HC (1980) J Chem Phys 72:2384

    Article  CAS  Google Scholar 

  25. Parrinello M, Rahman A (1981) J Appl Phys 52:7182

    Article  CAS  Google Scholar 

  26. Xiao HM (1993) The molecular orbital theory for nitrocompounds (in Chinese). National Defense Industry Press, Beijing

    Google Scholar 

  27. Xiao HM, Li YF (1996) The bond and electronic structure for metal azides (in Chinese). Science Press, Beijing

    Google Scholar 

  28. Botcher TR, Wright CA (1993) J Phys Chem 97:9149

    Article  CAS  Google Scholar 

  29. Choi M, Kim H, Chung C (1995) J Phys Chem 99:15785

    Article  CAS  Google Scholar 

  30. Luty T, Ordon P, Eckhardt CJ (2002) J Chem Phys 117:1775

    Article  CAS  Google Scholar 

  31. Weiner JH (1983) Statistical mechanics of elasticity. John Wiley, New York

    Google Scholar 

  32. Watt JP, Davies GF, O’Connell RJ (1976) Rev Geophys Space Phys 14(4):541

    Article  CAS  Google Scholar 

  33. Stevens LL, Eckhardt CJ (2005) J Chem Phys 122:174701

    Article  Google Scholar 

  34. Gilman JJ (1995) Philos Mag B 71:1057

    Article  CAS  Google Scholar 

  35. Dick JJ (1984) Appl Phys Lett 44:859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the key Fund of China Academy of Engineering Physics (Grant No. 2004Z0503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jijun Xiao or Heming Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J., Huang, H., Li, J. et al. Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation. J Mater Sci 43, 5685–5691 (2008). https://doi.org/10.1007/s10853-008-2704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2704-0

Keywords

Navigation