Skip to main content
Log in

Vibration damping in sandwich panels

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Currently, there is incomplete knowledge of the damping level and its sources in satellite structures and a suitable method to model it constitutes a necessary step for reliable dynamic predictions. As a first step of a damping characterization, the damping of honeycomb structural panels, which is identified as a main contributor to global damping, has been considered by ALCATEL SPACE. In this work, the inherent vibration damping mechanism in sandwich panels, including those with both aluminium and carbon fibre-reinforced plastic (CFRP) skins, is considered. It is first shown how the theoretical modal properties of the sandwich panel can be predicted from the stiffness and damping properties of its constituent components using the basic laminate theory, a first-order shear deformation theory and a simple discretization method. Next, a finite-element transcription of this approach is presented. It is shown to what extent this method can be implemented using a finite-element software package to predict the overall damping value of a sandwich honeycomb panel for each specific mode. Few of the many theoretical models used to predict natural frequencies of plates are supported by experimental data and even fewer for damping values. Therefore, in a second, experimental part, the Rayleigh–Ritz method and NASTRAN (finite-element software used by ALCATEL SPACE) predicted modal characteristics (frequency and damping) are compared with the experimentally obtained values for two specimens of typical aluminium core honeycomb panels (aluminium and CFRP skins) used by ALCATEL SPACE as structural panels. It is shown through these results that the method (theoretical and finite element) is satisfactory and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maheri MR, Adams RD (2003) J Sound Vibr 259(1):17. doi:https://doi.org/10.1006/jsvi.2002.5151

    Article  Google Scholar 

  2. Yuan WX, Dawe DJ (2002) Intl J Numer Meth Eng 54:195. doi:https://doi.org/10.1002/nme.411

    Article  Google Scholar 

  3. Chen Q, Chan YW (2000) Comput Struct 74:51. doi:https://doi.org/10.1016/S0045-7949(98)00321-6

    Article  Google Scholar 

  4. Noor AK, Burton WS, Bert CW (1996) Appl Mech Rev Trans ASME 49(3):155

    Article  Google Scholar 

  5. Nayak AK, Shenoi RA, Moy SSJ (2002) IMechE, J Mech Eng Sci 216:591

    Article  Google Scholar 

  6. Nayak AK, Moy SSJ, Shenoi RA (2003) J Strain Anal Eng Design 38:377. doi:https://doi.org/10.1243/03093240360713441

    Article  Google Scholar 

  7. Rikards R, Chate A, Korjakin A (1995) Eng Comput 12:61

  8. Adams RD, Maheri MR (1993) Compos Sci Technol 47(1):15. doi:https://doi.org/10.1016/0266-3538(93)90091-T

    Article  Google Scholar 

  9. Adams RD, Maheri MR (1994) Compos Sci Technol 50(4):497. doi:https://doi.org/10.1016/0266-3538(94)90058-2

    Article  Google Scholar 

  10. Dawe DJ, Roufaeil OL (1980) J Sound Vibr 69(3):345. doi:https://doi.org/10.1016/0022-460X(80)90477-0

    Article  Google Scholar 

  11. Craige TJ, Dawe DJ (1986) Intl J Solid Struct 22(2):155. doi:https://doi.org/10.1016/0020-7683(86)90005-3

    Article  Google Scholar 

  12. Adams RD, Bacon DGC (1973) J Compos Mater 7:402

    Article  Google Scholar 

  13. Young D (1950) J Appl Mech 17:448

    Google Scholar 

  14. Ashton JE, Waddoups ME (1969) J Compos Mater 3:148. doi:https://doi.org/10.1177/002199836900300111

    Article  Google Scholar 

  15. Ashton JE, Whitney JM (1970) Theory of laminated plates. Technomic Publishing Company, Conn, USA

    Google Scholar 

  16. Maheri MR, Adams RD (1995) Compos Sci Technol 55(1):13. doi:https://doi.org/10.1016/0266-3538(95)00074-7

    Article  CAS  Google Scholar 

  17. Maheri MR (1991) Vibration damping in composite/honeycomb sandwich beams, PhD thesis, Department of Mechanical Engineering, University of Bristol

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Adams.

Appendix

Appendix

Components of the Rayleigh–Ritz stiffness matrix

$$ C_{11} =\sum_{i=1}^M {\sum_{j=1}^N \left\{A_{44} \int_a {w_i w_m {\rm d}x} \;\int_b {w_i^{\prime} w_n^{\prime} {\rm d}y} + A_{55} \int_a {w_i^{\prime} w_m^{\prime} {\rm d}x} \;\int_b {w_j w_n {\rm d}y} +A_{45}\left[\int_a {w_i^{\prime} w_m {\rm d}x} \;\int\nolimits_b {w_j w_n^{\prime} {\rm d}y} + \int\nolimits_a {w_m^{\prime} w_i {\rm d}x} \;\int\nolimits_b {w_n w_j^{\prime} {\rm d}y} \right]\;\right\}} $$
$$ C_{12}=\sum_{i=1}^M {\sum_{j=1}^N { \left\{A_{55} \int\nolimits_a {\psi_m w_i^{\prime} {\rm d}x} \;\int\nolimits_b {w_n w_j {\rm d}y} + A_{45} \int\nolimits_a {\psi_m w_i {\rm d}x} \;\int\nolimits_b {w_n w_j^{\prime} {\rm d}y} \right\}} } $$
$$ C_{13} =\sum_{i=1}^M {\sum_{j=1}^N { \left\{A_{44} \int\nolimits_a {w_m w_i {\rm d}x} \;\int\nolimits_b {\psi_n w_j^{\prime} {\rm d}y} + A_{45} \int\nolimits_a {w_m w_i^{\prime} {\rm d}x} \;\int\nolimits_b {\psi_n w_j {\rm d}y}\right\}} } $$
$$ C_{21} =\sum_{i=1}^M {\sum_{j=1}^N { \left \{\;A_{55} \int\nolimits_a {\psi_i w_m^{\prime} {\rm d}x} \;\int\nolimits_b {w_j w_n {\rm d}y} + A_{45} \int\nolimits_a {\psi_i w_m {\rm d}x} \;\int\nolimits_b {w_j w_n^{\prime} {\rm d}y} \right \}} } $$
$$ C_{22} =\sum_{i=1}^M {\sum_{j=1}^N \left\{\;D_{11} \int\nolimits_a {\psi_i^{\prime} \psi_m^{\prime} {\rm d}x} \;\int\nolimits_b {w_j w_n {\rm d}y} + D_{16} \left[\int\nolimits_a {\psi_i^{\prime} \psi_m {\rm d}x} \;\int\nolimits_b {w_j w_n^{\prime} {\rm d}y} +\int\nolimits_a {\psi_m^{\prime} \psi_i {\rm d}x} \;\int\nolimits_b {w_n w_j^{\prime} {\rm d}y}\right] + D_{66} \int\nolimits_a {\psi_i \psi_m {\rm d}x} \;\int\nolimits_b {w_j^{\prime} w_n^{\prime} {\rm d}y} + A_{55} \int\nolimits_a {\psi_i \psi_m {\rm d}x} \;\int\nolimits_b {w_j w_n {\rm d}y}\right\}} $$
$$ C_{23}= \sum_{i=1}^M {\sum_{j=1}^N \left\{\;D_{12} \int\nolimits_a {\psi_i^{\prime} w_m {\rm d}x} \;\int\nolimits_b {\psi_n^{\prime} w_j {\rm d}y} + D_{16} \int\nolimits_a {\psi_i^{\prime} w_m^{\prime} {\rm d}x} \;\int\nolimits_b {w_j \psi_n {\rm d}y}+D_{26} \int\nolimits_a {w_m \psi_i {\rm d}x} \int\nolimits_b {\psi_n^{\prime} w_j^{\prime} {\rm d}y} + D_{66} \int\nolimits_a {\psi_i w_m^{\prime} {\rm d}x} \;\int\nolimits_b {w_j^{\prime} \psi_n {\rm d}y} +A_{45} \int\nolimits_a {\psi_i w_m {\rm d}x} \;\int\nolimits_b {w_j \psi_n {\rm d}y}\right\}} $$
$$ C_{31} =\sum_{i=1}^M {\sum_{j=1}^N { \left\{\;A_{44} \int\nolimits_a {w_i w_m {\rm d}x} \;\int\nolimits_b {\psi_j w_n^{\prime} {\rm d}y} + A_{45} \int\nolimits_a {w_i w_m^{\prime} {\rm d}x} \;\int\nolimits_b {\psi_j w_n {\rm d}y} \right\}} } $$
$$ C_{32} = \sum_{i=1}^M {\sum_{j=1}^N \left\{D_{12} \int\nolimits_a {\psi_m^{\prime} w_i {\rm d}x} \;\int\nolimits_b {\psi_j^{\prime} w_n {\rm d}y} + D_{16} \int\nolimits_a {\psi_m^{\prime} w_i^{\prime} {\rm d}x} \;\int\nolimits_b {w_n \psi_j {\rm d}y} + D_{26} \int\nolimits_a {w_i \psi_m {\rm d}x} \;\int\nolimits_b {\psi_j^{\prime} w_n^{\prime} {\rm d}y} + D_{66} \int\nolimits_a {\psi_m w_i^{\prime} {\rm d}x} \;\int\nolimits_b {w_n^{\prime} \psi_j {\rm d}y} + A_{45} \int\nolimits_a {\psi_m w_i {\rm d}x} \;\int\nolimits_b {w_n \psi_j {\rm d}y}\right\}}$$
$$ C_{33} = \sum_{i=1}^M {\sum_{j=1}^N { \left\{\;D_{22} \int\nolimits_a {w_i w_m {\rm d}x} \;\int\nolimits_b {\psi_j^{\prime} \psi_n^{\prime} {\rm d}y} + D_{26} \left[\int\nolimits_a {w_i w_m^{\prime} {\rm d}x} \;\int\nolimits_b {\psi_j^{\prime} \psi_n {\rm d}y} +\int\nolimits_a {w_m w_i^{\prime} {\rm d}x} \;\int\nolimits_b {\psi_n^{\prime} \psi_j {\rm d}y}\right] + D_{66} \int\nolimits_a {w_i^{\prime} w_m^{\prime} {\rm d}x} \;\int\nolimits_b {\psi_j \psi_n {\rm d}y} + A_{44} \int\nolimits_a {w_i w_m {\rm d}x} \;\int\nolimits_b {\psi_j \psi_n {\rm d}y}\right\}}} \quad\quad\quad\quad\quad\quad(m=1,\;2,\;\ldots \; M;\;\;n=1,\;2,\;\ldots \; N) $$

Components of the Rayleigh–Ritz mass matrix

$$ \begin{aligned} m_{11}&=\sum_{i=1}^M {\sum_{j=1}^N {\rho h \left[\int\nolimits_a {w_i w_m {\rm d}x} \;\int\nolimits_b {w_j w_n {\rm d}y} \right]} } \\ m_{22}&=\sum_{i=1}^M {\sum_{j=1}^N {\rho \frac{h^{3}}{12} \left[\int\nolimits_a {\psi_i \psi_m {\rm d}x} \;\int\nolimits_b {w_j w_n {\rm d}y} \right]} } \\ m_{33}&=\sum_{i=1}^M {\sum_{j=1}^N {\rho \frac{h^{3}}{12} \left[\int\nolimits_a {w_i w_m {\rm d}x} \;\int\nolimits_b {\psi_j \psi_n {\rm d}y} \right]} } \\ &\quad\quad\quad\quad\quad\quad(m=1,\;2,\;\ldots\;M;\;\;n=1,\;2,\;\ldots\;N) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maheri, M.R., Adams, R.D. & Hugon, J. Vibration damping in sandwich panels. J Mater Sci 43, 6604–6618 (2008). https://doi.org/10.1007/s10853-008-2694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2694-y

Keywords

Navigation