Journal of Materials Science

, 43:6391 | Cite as

Spark Plasma synthesis and diffusion of Cu and Ag in vanadium mixed valence oxides

Proceedings of the Symposium on Spark Plasma Synthesis and Sintering


Spark Plasma sintering (SPS) technique allows powders to be compacted at low temperature with a very short holding time. The powder loaded into a carbon die is heated via direct current pulses and simultaneously submitted to an uni-axial pressure of several MPa. Full density of the sample is achieved within minutes. This process is used to study Cu and Ag metals interactions with V2O5 oxide. Syntheses of M x V2O5 phases (M = Cu, Ag) have been achieved within minutes. Thus Cu and Ag atoms penetrate microcrystals of V2O5 oxide at a high speed, shearing its crystal network and simultaneously rebuilding the crystal structures of the prototype networks β, β′, ε or δ M x V2O5. To account for the formation of these phases identified by X-ray diffraction, structural mechanisms are proposed. Cu and Ag atomic diffusion parameters have been determined from energy dispersive X-ray spectroscopy (EDX) and electron micropobe analysis (EPMA) line scans. High values of diffusion coefficients have been determined. Cu atoms diffuse faster than Ag, D Cu ≈ 4 × 10−8 m2/s and D Ag ≈ 0.5–1 × 10−9 m2/s in ε and δ M x V2O5 phases, respectively. Their formation may also be used as a model for further investigations into the diffusion mechanisms of atoms in solids and for a better understanding of the SPS process.


V2O5 Spark Plasma Sinter Vanadium Oxide Vanadium Pentoxide Spark Plasma Sinter Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Centre National de la Recherche Scientifique (France) is gratefully acknowledged for its financial support.


  1. 1.
    Tokita M (1999) Mater Sci Forum 83:308Google Scholar
  2. 2.
    Omori M (2000) Mater Sci Eng A 287:183. doi: 10.1016/S0921-5093(00)00773-5 CrossRefGoogle Scholar
  3. 3.
    Shen ZJ, Johnsson M, Zhao Z, Nygren M (2002) J Am Ceram Soc 85(8):1921CrossRefGoogle Scholar
  4. 4.
    Anselmi-Tamburini U, Genari S, Garay JE, Munir ZA (2005) Mater Sci Eng 394:139. doi: 10.1016/j.msea.2004.11.019 CrossRefGoogle Scholar
  5. 5.
    Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Mater Sci Eng 394:132CrossRefGoogle Scholar
  6. 6.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: 10.1007/s10853-006-6555-2 CrossRefGoogle Scholar
  7. 7.
    Locci AM, Orru R, Cao G, Sanna S, Congiu F, Concas G (2006) AICHE J 52(7):2618CrossRefGoogle Scholar
  8. 8.
    Yamauchi A, Yoshimi K, Kurokawa K, Hanada S (2007) J Alloys Compd 434–435:420–3CrossRefGoogle Scholar
  9. 9.
    Recknagel C, Reinfried N, Hohn P, Schnelle W, Rosner H, Grin Yu, Leithe-Jasper A (2007) Sci Technol Adv Mater Elsevier Science Ltd 8(5):357Google Scholar
  10. 10.
    Inagaki J, Sakai Y, Uekawa N, Kojima T, Kakegawa K (2007) Mater Res Bull 42(6):1019CrossRefGoogle Scholar
  11. 11.
    Cao G, Locci AM, Orru R, Munir ZA (2006) Mater Sci Eng A Struct Mater Prop Microstr Process 434(1–2):23Google Scholar
  12. 12.
    Wadsley AD (1955) Acta Cryst 8:695CrossRefGoogle Scholar
  13. 13.
    Wadsley AD (1957) Acta Cryst 10:261CrossRefGoogle Scholar
  14. 14.
    Casalot A, Deschanvres A, Hagenmuller P, Raveau B (1965) Bull Soc Chim Fr XC 1730Google Scholar
  15. 15.
    Galy J, Lavaud D, Casalot A, Hagenmuller P (1970) J Solid State Chem 2:531CrossRefGoogle Scholar
  16. 16.
    Lavaud D, Galy J (1971) Acta Cryst B27:1005Google Scholar
  17. 17.
    Savariault JM, Deramond E, Galy J (1994) Z für Kristallogr 209:405Google Scholar
  18. 18.
    Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L, Galy J, Tarascon J-M (2003) Nat Mater 2:755CrossRefGoogle Scholar
  19. 19.
    Andersson S (1965) Acta Chem Scand 19:1371CrossRefGoogle Scholar
  20. 20.
    Deramond E, Savariault JM, Galy J (1994) Acta Cryst C50:164Google Scholar
  21. 21.
    Enjalbert R, Galy J (1986) Acta Cryst C42:1467Google Scholar
  22. 22.
    Galy J (1992) J Solid State Chem 100:209CrossRefGoogle Scholar
  23. 23.
    Monchoux JP, Galy J (2008) J Solid State Chem 181:693CrossRefGoogle Scholar
  24. 24.
    Crank J (1956) The Mathematics of Diffusion. Clarendon Press, OxfordGoogle Scholar
  25. 25.
    Rozier P, Satto C, Galy J (2000) Solid State Sci 2(6):595CrossRefGoogle Scholar
  26. 26.
    Sholtens BB (1976) Mat Res Bull 11:1533CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Centre d’Elaboration de Matériaux et d’Etudes Structurales-CNRSToulouse Cedex 4France

Personalised recommendations