Skip to main content
Log in

Hybridisation effect on flexural properties of single- and double-gated injection moulded acrylonitrile butadiene styrene (ABS) filled with short glass fibres and glass beads particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present study investigated the effect of hybridisation on flexural strength and modulus of single-gated (SG) and double-gated (DG) injection moulded acrylonitrile butadiene styrene (ABS) polymer reinforced with both short glass fibres (GF) and spherical glass beads (GB). It was observed that flexural strength and modulus of SG and DG ABS/GF/GB hybrids increased with increasing the total concentration of the glass in the hybrid as well as the concentration of glass fibres in the hybrid (χf). Results indicated that hybrid flexural properties for both SG and DG mouldings obey the simple rule of mixtures. The presence of weldlines in DG mouldings had a negative effect on flexural properties. It was noted that weldline integrity factor (weld to unweld property ratio) for flexural modulus and strength decreased with increasing the total concentration of the glass in the hybrid. However, whilst weldline integrity factor for flexural modulus decreased with increasing χf, weldline integrity factor for flexural strength showed no significant variation with respect χf. Weldline integrity factors indicated that the hybrid flexural strength is more affected by the presence of weldline than the hybrid flexural modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hashemi S, Gilbride MT, Hodgkinson JM (1996) J Mater Sci 32:5017. doi:https://doi.org/10.1007/BF00355900

    Article  Google Scholar 

  2. Din KJ, Hashemi S (1997) J Mater Sci 32:375. doi:https://doi.org/10.1023/A:1018553400266

    Article  CAS  Google Scholar 

  3. Chrysostomou A, Hashemi S (1998) J Mater Sci 33:1165. doi:https://doi.org/10.1023/A:1004365323620

    Article  CAS  Google Scholar 

  4. Chrysostomou A, Hashemi S (1998) J Mater Sci 33:4491. doi:https://doi.org/10.1023/A:1004487814709

    Article  CAS  Google Scholar 

  5. Nabi ZU, Hashemi S (1998) J Mater Sci 33:2985. doi:https://doi.org/10.1023/A:1004362915713

    Article  CAS  Google Scholar 

  6. Hashemi S (2002) Plast Rubber Compos 31:1. doi:https://doi.org/10.1179/146580101125000484

    Article  Google Scholar 

  7. Hashemi S, Lepessova Y (2007) J Mater Sci 42:2652. doi:https://doi.org/10.1007/s10853-006-1358-z

    Article  CAS  Google Scholar 

  8. Necar M, Irfan-ul-Haq Khan Z (2003) J Mater Process Technol 142:247. doi:https://doi.org/10.1016/S0924-0136(03)00567-3

    Article  Google Scholar 

  9. Fu SY, Lauke B, Mader E, Yue CY, Hu X (2000) Composites Part A 31:1117. doi:https://doi.org/10.1016/S1359-835X(00)00068-3

    Article  Google Scholar 

  10. Fisa B (1985) Polym Compos 6:232. doi:https://doi.org/10.1002/pc.750060408

    Article  CAS  Google Scholar 

  11. Thomason JL (2002) Compos Sci Technol 62:1455. doi:https://doi.org/10.1016/S0266-3538(02)00097-0

    Article  CAS  Google Scholar 

  12. Thomason JL (2001) Compos Sci Technol 61:2007. doi:https://doi.org/10.1016/S0266-3538(01)00062-8

    Article  CAS  Google Scholar 

  13. Yilmazer U (1992) Compos Sci Technol 44:119. doi:https://doi.org/10.1016/0266-3538(92)90104-B

    Article  CAS  Google Scholar 

  14. Hashemi S, Elmes P, Sandford S (1997) Polym Eng Sci 37:45

    Article  CAS  Google Scholar 

  15. Phillips LN (1976) Composites 7:7. doi:https://doi.org/10.1016/0010-4361(76)90273-1

    Article  Google Scholar 

  16. Debondue E, Foumier J-E, Lacrampe MF, Krawczak (2004) J Polym Polym Compos 12:373

  17. Sanschagrin B, Gauvin R, Fisa B, Vu-Khanh T (1990) J Reinf Plast Compos 8:194. doi:https://doi.org/10.1177/073168449000900209

    Article  Google Scholar 

  18. Meddad A, Fisa B (1995) Polym Eng Sci 35:893

    Article  CAS  Google Scholar 

  19. Akay M, Barkley D (1993) Plast Rubber Compos 20:137

    CAS  Google Scholar 

  20. Nadkarni VM, Ayodhya SR (1993) Polym Eng Sci 33:358

    Article  CAS  Google Scholar 

  21. Hashemi S (2008) J Mater Sci. doi:https://doi.org/10.1007/s10853-007-2443-7

    Article  CAS  Google Scholar 

  22. Cox HL (1952) Br Appl Phys 3:72

    Article  Google Scholar 

  23. Einstein A (1906) Ann Phys 19:289. doi:https://doi.org/10.1002/andp.19063240204

    Article  CAS  Google Scholar 

  24. Leidner J, Woodhams RT (1974) J Appl Polym Sci 18:1639. doi:https://doi.org/10.1002/app.1974.070180606

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, S. Hybridisation effect on flexural properties of single- and double-gated injection moulded acrylonitrile butadiene styrene (ABS) filled with short glass fibres and glass beads particles. J Mater Sci 43, 4811–4819 (2008). https://doi.org/10.1007/s10853-008-2683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2683-1

Keywords

Navigation