Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4801–4810 | Cite as

The role of Harper–Dorn creep at high temperatures and very low stresses

  • Praveen Kumar
  • Michael E. Kassner
  • Terence G. Langdon
Article

Abstract

Creep experiments were conducted on single crystals of very high purity aluminum to evaluate the validity of the Harper–Dorn region of flow which occurs at very low stresses and high homologous temperatures. The results confirm the existence of a different flow process under these conditions but with a stress exponent closer to ∼3 rather than 1. Measurements show that the dislocation density within this low stress region varies with stress in a manner consistent with the behavior anticipated from an extrapolation of data reported in the regime of conventional power-law creep at high stresses. All of the experimental results are in reasonable agreement with earlier published data, including with the original data of Harper and Dorn when their results are plotted without incorporating a threshold stress.

Keywords

Dislocation Density Creep Rate Creep Strain Threshold Stress Stress Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Dr. Philip Eisenlohr and Prof. Wolfgang Blum (University of Erlangen-Nürnberg) for several helpful discussions. This work was supported by the Lawrence Livermore Laboratory under Grant B552748.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Bird JE, Mukherjee AK, Dorn JE (1969) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructure. Israel Universities Press, Jerusalem, Israel, p 255Google Scholar
  2. 2.
    Langdon TG (2002) Metall Mater Trans 33A:249CrossRefGoogle Scholar
  3. 3.
    Weertman J (1957) J Appl Phys 28:1185. doi: 10.1063/1.1722604 CrossRefGoogle Scholar
  4. 4.
    Weertman J (1955) J Appl Phys 26:1213. doi: 10.1063/1.1721875 CrossRefGoogle Scholar
  5. 5.
    Mohamed FA, Langdon TG (1974) Acta Metall 22:779. doi: 10.1016/0001-6160(74)90088-1 CrossRefGoogle Scholar
  6. 6.
    Yavari P, Langdon TG (1982) Acta Metall 30:2181. doi: 10.1016/0001-6160(82)90139-0 CrossRefGoogle Scholar
  7. 7.
    Cannon WR, Langdon TG (1983) J Mater Sci 18:1. doi: 10.1007/BF00543808 CrossRefGoogle Scholar
  8. 8.
    Cannon WR, Langdon TG (1988) J Mater Sci 23:1. doi: 10.1007/BF01174028 CrossRefGoogle Scholar
  9. 9.
    Nabarro FRN (1948) Report of a conference on strength of solids. The Physical Society, London, UK, p 75Google Scholar
  10. 10.
    Herring C (1950) J Appl Phys 21:437. doi: 10.1063/1.1699681 CrossRefGoogle Scholar
  11. 11.
    Coble RL (1963) J Appl Phys 34:1679. doi: 10.1063/1.1702656 CrossRefGoogle Scholar
  12. 12.
    Harper J, Dorn JE (1957) Acta Metall 5:654. doi: 10.1016/0001-6160(57)90112-8 CrossRefGoogle Scholar
  13. 13.
    Barrett CR, Muehleisen EC, Nix WD (1972) Mater Sci Eng 10:33. doi: 10.1016/0025-5416(72)90063-8 CrossRefGoogle Scholar
  14. 14.
    Mohamed FA, Murty KL, Morris JW (1973) Metall Trans 4:935. doi: 10.1007/BF02645593 CrossRefGoogle Scholar
  15. 15.
    Mohamed FA, Langdon TG (1974) Metall Trans 5:2339. doi: 10.1007/BF02644014 CrossRefGoogle Scholar
  16. 16.
    Kumar P, Kassner ME, Langdon TG (2007) J Mater Sci 42:409. doi: 10.1007/s10853-006-0782-4 CrossRefGoogle Scholar
  17. 17.
    Murty KL, Mohamed FA, Dorn JE (1972) Acta Metall 20:1009. doi: 10.1016/0001-6160(72)90135-6 CrossRefGoogle Scholar
  18. 18.
    Murty KL (1974) Mater Sci Eng 14:169. doi: 10.1016/0025-5416(74)90010-X CrossRefGoogle Scholar
  19. 19.
    Mohamed FA (1978) Metall Trans 9A:1343Google Scholar
  20. 20.
    Yavari P, Mohamed FA, Langdon TG (1981) Acta Metall 29:1495. doi: 10.1016/0001-6160(81)90184-X CrossRefGoogle Scholar
  21. 21.
    Yavari P, Miller DA, Langdon TG (1982) Acta Metall 30:871. doi: 10.1016/0001-6160(82)90085-2 CrossRefGoogle Scholar
  22. 22.
    Mohamed FA, Ginter TJ (1982) Acta Metall 30:1869. doi: 10.1016/0001-6160(82)90027-X CrossRefGoogle Scholar
  23. 23.
    Lee S, Ardell AJ (1985) In: McQueen HJ, Bailon J-P, Dickson JI, Jonas JJ, Akben MG (eds) Strength of metals and alloys (ICSMA 7), vol 1. Pergamon Press, Oxford, UK, p 671Google Scholar
  24. 24.
    Ginter TJ, Chaudhury PK, Mohamed FA (2001) Acta Mater 49:263. doi: 10.1016/S1359-6454(00)00316-5 CrossRefGoogle Scholar
  25. 25.
    Ginter TJ, Mohamed FA (2002) Mater Sci Eng A322:148. doi: 10.1016/S0921-5093(01)01127-3 Google Scholar
  26. 26.
    Srivastava V, McNee KR, Jones H, Greenwood GW (2005) Mater Sci Tech 21:701CrossRefGoogle Scholar
  27. 27.
    Mohamed FA (2007) Mater Sci Eng A463:177. doi: 10.1016/j.msea.2006.06.142 Google Scholar
  28. 28.
    Muehleisen EC, Barrett CR, Nix WD (1970) Scripta Metall 4:995. doi: 10.1016/0036-9748(70)90047-5 CrossRefGoogle Scholar
  29. 29.
    Burton B (1972) Phil Mag 25:645. doi: 10.1080/14786437208228897 CrossRefGoogle Scholar
  30. 30.
    Blum W, Maier W (1999) Phys Stat Sol (a) 171:467. doi:10.1002/(SICI)1521-396X(199902)171:2<467::AID-PSSA467>3.0.CO;2-8Google Scholar
  31. 31.
    McNee KR, Jones H, Greenwood GW (2001) In: Parker JD (ed) Creep and fracture of engineering materials and structures. The Institute of Materials, London, UK, p 185Google Scholar
  32. 32.
    Evans AG, Langdon TG (1976) Prog Mater Sci 21:171. doi: 10.1016/0079-6425(76)90006-2 CrossRefGoogle Scholar
  33. 33.
    Bailey JE, Hirsch PB (1960) Phil Mag 5:485. doi: 10.1080/14786436008238300 CrossRefGoogle Scholar
  34. 34.
    Horiuchi R, Otsuka M (1972) Trans Japan Inst Metals 13:284Google Scholar
  35. 35.
    Kumar P, Kassner ME, Blum W, Eisenlohr P, Langdon TG (2008) Mater Sci Eng (in press)Google Scholar
  36. 36.
    Kassner ME, McMahon ME (1987) Metall Trans 18A:835Google Scholar
  37. 37.
    Lin P, Lee SS, Ardell AJ (1986) Acta Metall 37:739. doi: 10.1016/0001-6160(89)90257-5 Google Scholar
  38. 38.
    Blum W (1993) In: Cahn RW, Hassen P, Kramer EJ (eds) Plastic deformation and fracture. VCH Publishers, Weinheim, Germany, p 339Google Scholar
  39. 39.
    Straub S, Blum W (1990) Scripta Metall Mater 24:1837. doi: 10.1016/0956-716X(90)90036-G CrossRefGoogle Scholar
  40. 40.
    Blum W, Eisenlohr P, Breutinger F (2002) Metall Mater Trans 33A:291CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Praveen Kumar
    • 1
    • 3
  • Michael E. Kassner
    • 1
  • Terence G. Langdon
    • 1
    • 2
  1. 1.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.Department of Mechanical and Astronautical EngineeringNaval Postgraduate SchoolMontereyUSA

Personalised recommendations