Journal of Materials Science

, Volume 43, Issue 14, pp 4760–4767 | Cite as

Electrical transport properties of Nd0.67−x Eu x Sr0.33MnO3 (0 ≤ x ≤ 0.67) manganites



A systematic investigation of electrical transport properties viz., electrical conductivity and thermopower of Eu-doped Neodymium-based colossal magnetoresistive manganites with compositional formula, Nd0.67−x Eu x Sr0.33MnO3 (x = 0–0.67) has been undertaken. These materials were prepared by citrate gel route and characterized by X-ray diffraction, scanning electron microscopy, AC susceptibility, and electrical resistivity measurements. With a view to understand the complex conduction mechanism of these materials, electrical resistivity and thermoelectric power (TEP) data have been analyzed using various theoretical models. It has been concluded that the ferromagnetic metallic part of the conduction mechanism is explained by grain/domain boundary, electron–electron, and magnon scattering mechanisms, while that of high temperature paramagnetic insulating region might be due to small polaron hopping mechanism. The sign change of charge carriers observed in TEP measurements is attributed to the oxygen deficiency of the samples.


Manganite Electrical Transport Property Compositional Formula Metal Insulator Transition Temperature Adiabatic Small Polaron 



One of the authors (G. Venkataiah) is grateful to CSIR, Govt. of India for awarding Research Associate (RA) Fellowship.


  1. 1.
    Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Science 264:413CrossRefGoogle Scholar
  2. 2.
    Rao CNR, Raveau B (eds) (1998) Colossal magnetoresistance, charge ordering and other related properties of rare earth manganates. World Scientific, SingaporeGoogle Scholar
  3. 3.
    Ramirez AP (1997) J Phys Condens Matter 9:8171CrossRefGoogle Scholar
  4. 4.
    Zener C (1951) Phys Rev 82:403CrossRefGoogle Scholar
  5. 5.
    Venkataiah G, Venugopal Reddy P (2005) J Magn Magn Mater 285:343CrossRefGoogle Scholar
  6. 6.
    Chen B, Uher C, Morelli DT, Mantese JV, Mance AM, Micheli AL (1996) Phys Rev B 53:5094CrossRefGoogle Scholar
  7. 7.
    Blatt FJ, Schroeder PA, Foiles CL, Greig D (1976) Thermoelectric power of metals. Plenum, New YorkGoogle Scholar
  8. 8.
    Fisher B, Patlagan L, Reisner GM, Knizhnik A (1997) Phys Rev B 55:9227CrossRefGoogle Scholar
  9. 9.
    Yamada S, Amira T, Ikeda H, Takita K (2000) J Phys Soc Japan 69:1278CrossRefGoogle Scholar
  10. 10.
    Tomioka Y, Asamitsu A, Kuwahara H, Moritomo Y, Tokura Y (1996) Phys Rev B 53:R1689CrossRefGoogle Scholar
  11. 11.
    Yoshizawa H, Kawano H, Tomioka Y, Tokura Y (1995) Phys Rev B 52:R13145CrossRefGoogle Scholar
  12. 12.
    Rao CNR, Cheetham AK (1997) Science 276:911CrossRefGoogle Scholar
  13. 13.
    Mandal P (2000) Phys Rev B 61:14675CrossRefGoogle Scholar
  14. 14.
    Venkataiah G, Venugopal Reddy P (2005) Solid State Commun 136:114Google Scholar
  15. 15.
    Young RA (1993) The Rietveld method. Oxford University Press, New YorkGoogle Scholar
  16. 16.
    Venkataiah G, Prasad V, Venugopal Reddy P (2007) Solid State Commun 141:73CrossRefGoogle Scholar
  17. 17.
    Vogel AI (1978) A text book of quantitative inorganic analysis including elementary instrumental analysis, 4th edn. Longman, LondonGoogle Scholar
  18. 18.
    Kundu AK, Nordblad P, Rao CNR (2006) J Phys Condens Matter 18:4809CrossRefGoogle Scholar
  19. 19.
    Taskin AA, Lavrov AN, Ando Y (2006) Phys Rev B 73:121101CrossRefGoogle Scholar
  20. 20.
    Benerjee A, Pal S, Chaudhuri BK (2001) J Chem Phys 115:1550CrossRefGoogle Scholar
  21. 21.
    Snyder GJ, Hiskers R, DiCarolis S, Beasley MR, Geballe TH (1996) Phys Rev B 53:14434CrossRefGoogle Scholar
  22. 22.
    De Teresa JM, Ibarra MR, Blasco J, García J, Marquina C, Algarabel PA, Arnold Z, Kamenev K, Ritter C, von Helmolt R (1996) Phys Rev B 54:1187CrossRefGoogle Scholar
  23. 23.
    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Phys Rev B 51:14103CrossRefGoogle Scholar
  24. 24.
    Pi L, Zhang L, Zhang Y (2000) Phys Rev B 61:8917CrossRefGoogle Scholar
  25. 25.
    Mott NF, Davis EA (1971) Electronic process in noncrystalline materials. Clarendon, OxfordGoogle Scholar
  26. 26.
    Emin D, Holstein T (1969) Ann Phys 53:439CrossRefGoogle Scholar
  27. 27.
    Bhattacharya S, Mukherjee RK, Chaudhuri BK (2003) Appl Phys Lett 82:4101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia
  2. 2.Department of PhysicsNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations