Skip to main content
Log in

Direct measurement of drainage curves in infiltration of SiC particle preforms: influence of interfacial reactivity

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present dynamic measurement of drainage curves in two systems having relevance to metal matrix composite processing, namely SiC/Al and SiC/Al-12.2at%Si. Data show that liquid/solid chemical reactions that cause a lowering of the contact angle do indeed drive spontaneous ingress of metal into the preforms at fixed applied pressure; however, these also hinder infiltration under continuous infiltration, lower pressurization rates causing a reduced level of penetration by the metal at given pressure. Metal/reinforcement chemical interactions that can drive wetting by lowering the contact angle are, therefore, not necessarily beneficial in the pressure infiltration processing of particle reinforced metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eustathopoulos N (1998) Acta Mater 46:2319. doi:https://doi.org/10.1016/S1359-6454(97)00388-1

    CAS  Google Scholar 

  2. Eustathopoulos N (2005) Curr Opin Solid State Mater Sci 9:152. doi:https://doi.org/10.1016/j.cossms.2006.04.004

    Article  CAS  Google Scholar 

  3. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon Press, Oxford, UK

    Google Scholar 

  4. Laurent V, Chatain D, Eustathopoulos N (1991) Mater Sci Eng A 135:89. doi:https://doi.org/10.1016/0921-5093(91)90542-U

    Article  Google Scholar 

  5. Laurent V, Rado C, Eustathopoulos N (1996) Mater Sci Eng A 205:1. doi:https://doi.org/10.1016/0921-5093(95)09896-8

    Article  Google Scholar 

  6. Naidich JV (1981) Progress in surface and membrane science, vol 14. Academic Press, New York

    Google Scholar 

  7. Kölher W (1975) Aluminium 51:443

    Google Scholar 

  8. Laurent V, Chatain D, Eustathopoulos N (1987) J Mater Sci 22:244. doi:https://doi.org/10.1007/BF01160579

    Article  CAS  Google Scholar 

  9. Lloyd DJ (1989) Compos Sci Technol 35:159. doi:https://doi.org/10.1016/0266-3538(89)90093-6

    Article  CAS  Google Scholar 

  10. Shen P, Fujii H, Matsumoto T, Nogi K (2004) Metall Mater Trans A 35:583. doi:https://doi.org/10.1007/s11661-004-0369-0

    Article  Google Scholar 

  11. Bahraini M, Molina JM, Weber L, Mortensen A (2007) Mater Sci Eng A (accepted)

  12. Mortensen A, Wong T (1990) Metall Trans A 21:2257. doi:https://doi.org/10.1007/BF02647888

    Article  Google Scholar 

  13. Molina JM, Rodriguez-Guerrero A, Bahraini M, Weber L, Narciso J, Rodriguez-Reinoso F, Louis E, Mortensen A (2007) Scripta Mater 56:991. doi:https://doi.org/10.1016/j.scriptamat.2007.01.042

    Article  CAS  Google Scholar 

  14. Bahraini M, Molina JM, Kida M, Weber L, Narciso J, Mortensen A (2005) Curr Opin Solid State Mater Sci 9:196. doi:https://doi.org/10.1016/j.cossms.2006.02.007

    Article  CAS  Google Scholar 

  15. Mortensen A, Jin I (1992) Int Mater Rev 37:101

    Article  CAS  Google Scholar 

  16. Mortensen A (2000) In: Clyne TW (vol ed), Kelly A, Zweben C (series ed) Comprehensive composite materials, vol 3. Metal matrix composites. Pergamon Press, Oxford, UK

  17. Chiang YM, Messner RP, Terwilliger CD, Behrendt DR (1991) Mater Sci Eng A 144:63. doi:https://doi.org/10.1016/0921-5093(91)90210-E

    Article  Google Scholar 

  18. Nakae H, Fujii H, Nakajima K, Goto A (1997) Mater Sci Eng A 223:21. doi:https://doi.org/10.1016/S0921-5093(96)10488-3

    Article  Google Scholar 

  19. Bahraini M, Weber L, Narciso J, Mortensen A (2005) J Mater Sci 40:2487. doi:https://doi.org/10.1007/s10853-005-1980-1

    Article  CAS  Google Scholar 

  20. Geiger GH, Poirier DR (1973) Transport phenomena in metallurgy. Addison-Wesley, Reading, MA

    Google Scholar 

  21. Bahraini M (2007) Characterization of capillary forces during liquid metal infiltration. Phd-thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

  22. Morrow NR (1970) Ind Eng Chem 62:32. doi:https://doi.org/10.1021/ie50726a006

    Article  CAS  Google Scholar 

  23. Levi G, Kaplan W (2003) Acta Mater 51:2793

    Article  CAS  Google Scholar 

  24. Levi G, Kaplan W (2002) Acta Mater 50:75. doi:https://doi.org/10.1016/S1359-6454(01)00333-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of this research from NEDO International Joint Research Grant Program, Project 01MB7, CTI project no. 6752-2 and the internal funds from the Laboratory of Mechanical Metallurgy at EPFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Molina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, J.M., Bahraini, M., Weber, L. et al. Direct measurement of drainage curves in infiltration of SiC particle preforms: influence of interfacial reactivity. J Mater Sci 43, 5061–5067 (2008). https://doi.org/10.1007/s10853-008-2670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2670-6

Keywords

Navigation