Skip to main content
Log in

Effect of extrusion ratio on microstructure and mechanical properties of microwave-sintered magnesium and Mg/Y2O3 nanocomposite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present study establishes that extrusion ratio has a critical role in enhancing microstructural and mechanical characteristics of commercially pure magnesium and a magnesium-based nanocomposite. The study reveals that the best microstructural and mechanical characteristics can be achieved in a Mg/Y2O3 nanocomposite provided it is extruded at a ratio higher than a critical extrusion ratio (19:1). An extrusion ratio at 25:1 is found to be the ratio in the present study which leads to significant enhancement in microstructural characteristics (low porosity and good distribution of particulates) and mechanical properties (microhardness, 0.2% YS and UTS) of a Mg/2 wt.%Y2O3 nanocomposite. Results of this study also show very close relationship between microhardness and strengths (0.2% YS and UTS) for both pure magnesium and Mg/Y2O3 composite extruded at different extrusion ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lloyd DJ (1994) Int Mater Rev 39:1

    Article  CAS  Google Scholar 

  2. Evans A, Marchi CS, Mortensen A (2003) Metal matrix composites in industry: an introduction and a survey. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  3. Goh CS, Wei J, Lee LC, Gupta M (2007) Acta Mater 55:5115. doi:https://doi.org/10.1016/j.actamat.2007.05.032

    Article  CAS  Google Scholar 

  4. Hassan SF, Gupta M (2005) Mater Sci Eng A 392:163. doi:https://doi.org/10.1016/j.msea.2004.09.047

    Article  Google Scholar 

  5. Wong WLE, Gupta M (2007) Compos Sci Technol 67:1541. doi:https://doi.org/10.1016/j.compscitech.2006.07.015

    Article  CAS  Google Scholar 

  6. Perez P, Garces G, Adeva P (2004) Compos Sci Technol 64:145. doi:https://doi.org/10.1016/S0266-3538(03)00215-X

    Article  CAS  Google Scholar 

  7. Ferkel H, Mordike BL (2001) Mater Sci Eng A 298:193. doi:https://doi.org/10.1016/S0921-5093(00)01283-1

    Article  Google Scholar 

  8. Jiang QC, Wang HY, Ma BX, Wang Y, Zhao F (2005) J Alloys Compd 386:177. doi:https://doi.org/10.1016/j.jallcom.2004.06.015

    Article  CAS  Google Scholar 

  9. Wang HY, Jiang QC, Wang Y, Ma BX, Zhao F (2004) Mater Lett 58:3509. doi:https://doi.org/10.1016/j.matlet.2004.04.038

    Article  CAS  Google Scholar 

  10. Graces G, Rodriguez M, Perez P, Adeva P (2006) Mater Sci Eng A 419:357. doi:https://doi.org/10.1016/j.msea.2006.01.026

    Article  Google Scholar 

  11. Xiuqing Z, Haowei W, Lihua L, Xinying T, Naiheng M (2005) Mater Lett 59:2105

    Article  Google Scholar 

  12. Hassan SF, Gupta M (2007) J Alloys Compd 429:176. doi:https://doi.org/10.1016/j.jallcom.2006.04.033

    Article  CAS  Google Scholar 

  13. Chen Y, Wang Q, Peng J, Zhai C, Ding W (2007) J Mater Process Technol 182:281. doi:https://doi.org/10.1016/j.jmatprotec.2006.08.012

    Article  CAS  Google Scholar 

  14. Murai T, Matsuoka S, Miyamoto S, Oki Y (2003) J Mater Process Technol 141:207. doi:https://doi.org/10.1016/S0924-0136(02)01106-8

    Article  CAS  Google Scholar 

  15. Lee DM, Suh BK, Kim BG, Lee JS, Lee CH (1997) Mater Sci Technol 13:590

    Article  CAS  Google Scholar 

  16. Gupta M, Wong WLE (2005) Scripta Mater 52:479. doi:https://doi.org/10.1016/j.scriptamat.2004.11.006

    Article  CAS  Google Scholar 

  17. Kawamura Y, Kato H, Inoue A, Masumoto T (1996) Mater Sci Eng A 219:39. doi:https://doi.org/10.1016/S0921-5093(96)10437-8

    Article  Google Scholar 

  18. Cocen U, Onel K (2002) Compos Sci Technol 62:275. doi:https://doi.org/10.1016/S0266-3538(01)00198-1

    Article  CAS  Google Scholar 

  19. Tekmen C, Ozdemir I, Cocen U, Onel K (2003) Mater Sci Eng A 360:365. doi:https://doi.org/10.1016/S0921-5093(03)00461-1

    Article  Google Scholar 

  20. Inem B (1995) Mater Sci Eng A 197:91. doi:https://doi.org/10.1016/0921-5093(94)09753-4

    Article  Google Scholar 

  21. Wang XJ, Wu K, Zhang HF, Huang WH, Chang H, Gan WM, Zheng MY, Peng DL (2007) Mater Sci Eng A 465:78. doi:https://doi.org/10.1016/j.msea.2007.03.077

    Article  Google Scholar 

  22. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Mater Sci Eng A 238:219. doi:https://doi.org/10.1016/S0921-5093(97)00424-3

    Article  Google Scholar 

  23. Shahani RA, Clyne TW (1991) Mater Sci Eng A 135:281. doi:https://doi.org/10.1016/0921-5093(91)90576-9

    Article  Google Scholar 

  24. Gupta M, Sikand R, Gupta AK (1994) Scripta Metal 30:1343. doi:https://doi.org/10.1016/0956-716X(94)90270-4

    Article  CAS  Google Scholar 

  25. Lloyd DJ, Lagace H, McLeod A, Morris PL (1989) Mater Sci Eng A 107:73. doi:https://doi.org/10.1016/0921-5093(89)90376-6

    Article  Google Scholar 

  26. Bocchini GF (1986) Int J Powder Metall 22:185

    CAS  Google Scholar 

  27. Karabay S, Zeren M, Yilmaz M (2003) J Mater Process Technol 135:101. doi:https://doi.org/10.1016/S0924-0136(02)01110-X

    Article  CAS  Google Scholar 

  28. Karabay S, Yilmaz M, Zeren M (2005) J Mater Process Technol 160:138. doi:https://doi.org/10.1016/j.jmatprotec.2004.05.025

    Article  CAS  Google Scholar 

  29. German RM (1994) Powder metallurgy science, 2nd edn. Metal Powder Industries Federation, Princeton

    Google Scholar 

  30. Wang XL, Yu Y, Wang ED (2005) Mater Sci Forum 488–489:535

    Article  Google Scholar 

  31. Robert CS (1960) Magnesium and its alloys. Wiley, New York

    Google Scholar 

  32. Yamashita A, Horita Z, Langdon TG (2001) Mater Sci Eng A 300:142. doi:https://doi.org/10.1016/S0921-5093(00)01660-9

    Article  Google Scholar 

  33. Kim TW (2006) Scripta Mater 55:1115. doi:https://doi.org/10.1016/j.scriptamat.2006.08.034

    Article  CAS  Google Scholar 

  34. McDanels DL (1985) Metall Trans A 16A:1105. doi:https://doi.org/10.1007/BF02811679

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge NUS research scholarship for supporting the research effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tun, K.S., Gupta, M. Effect of extrusion ratio on microstructure and mechanical properties of microwave-sintered magnesium and Mg/Y2O3 nanocomposite. J Mater Sci 43, 4503–4511 (2008). https://doi.org/10.1007/s10853-008-2649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2649-3

Keywords

Navigation