Journal of Materials Science

, 43:6435 | Cite as

Pulsed electric current sintering of electrically conductive ceramics

  • K. Vanmeensel
  • S. G. Huang
  • A. Laptev
  • S. A. Salehi
  • A. K. Swarnakar
  • O. Van der Biest
  • J. Vleugels
Proceedings of the Symposium on Spark Plasma Synthesis and Sintering


The processing of yttria-stabilised zirconia (Y-ZrO2)-based ceramic nanocomposites by means of pulsed electric current sintering (PECS) is described. A nanometer-sized electrically conductive secondary TiCN phase was added to the insulating zirconia matrix in order to make the composite electrically conductive. The paper focuses on the importance of processing conditions and highlights the benefits of the PECS method as compared to more traditional hot pressing. The mechanical and microstructural properties of the ZrO2–TiCN composites have been determined, and the benefits of using an electrical current to densify these composites were explained in terms of the evolution of the electrical properties of the densifying powder compact.


Fracture Toughness Electrical Discharge Machine Densification Behaviour Sinter Powder Compact Bead Milling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed within the framework of the Research Fund of K.U.Leuven under project GOA/08/007 and FWO project grant number 3E060133. K. Vanmeensel thanks the Fund for Scientific Research Flanders (FWO), S. Salehi thanks the Research Council of K.U.Leuven for a doctoral scholarship (DB/07/012) and A Laptev acknowledges the Research Council of K.U.Leuven for his research fellowship. The authors also acknowledge the support of the Belgian Federal Science Policy Office (BELSPO) through the NACER project (contract P2/00/07).


  1. 1.
    Garvie RC, Hannink RHJ, Pascoe RT (1975) Nature 258:703CrossRefGoogle Scholar
  2. 2.
    Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461Google Scholar
  3. 3.
    Basu B, Vleugels J, Van der Biest O (2002) Key Eng Mater 206–213:1177Google Scholar
  4. 4.
    Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:3269CrossRefGoogle Scholar
  5. 5.
    Basu B, Vleugels J, Van der Biest O (2002) J Alloys Compd 334:200CrossRefGoogle Scholar
  6. 6.
    Vleugels J, Van der Biest O (1999) J Am Ceram Soc 82:2717Google Scholar
  7. 7.
    Vanmeensel K, Sastry KY, Laptev A, Vleugels J, Van der Biest O (2005) Solid State Phenom 106:153CrossRefGoogle Scholar
  8. 8.
    Salehi S, Van der Biest O, Vleugels J (2006) J Eur Ceram Soc 26(15):3173CrossRefGoogle Scholar
  9. 9.
    Rul S, Lefevre-Schlick F, Capria E, Laurent C, Peigney A (2004) Acta Mater 52:1061CrossRefGoogle Scholar
  10. 10.
    Jiang D, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:1247CrossRefGoogle Scholar
  11. 11.
    Duan RG, Kuntz JD, Garay JE, Mukherjee AK (2004) Scripta Mater 50:1309CrossRefGoogle Scholar
  12. 12.
    Kawano S, Takahashi J, Shimada S (2004) J Eur Ceram Soc 24:309CrossRefGoogle Scholar
  13. 13.
    Mayo MJ (2000) Adv Eng Mater 2:409CrossRefGoogle Scholar
  14. 14.
    Guo Z, Blugan G, Kirchner R, Reece M, Graule T, Kuebler J (2007) Ceram Int 33:1223CrossRefGoogle Scholar
  15. 15.
    Kear BH, Colaizzi J, Mayo WE, Liao SC (2001) Scripta Mater 44:2065CrossRefGoogle Scholar
  16. 16.
    Angerer P, Yu LG, Khor KA, Krumpel G (2004) Mater Sci Eng A 381:16CrossRefGoogle Scholar
  17. 17.
    Nygren M, Shen Z (2003) Solid State Sci 5:125CrossRefGoogle Scholar
  18. 18.
    Basu B, Vleugels J, Van der Biest O (2004) Mater Sci Eng A 380:215CrossRefGoogle Scholar
  19. 19.
    Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Acta Mater 53:4379CrossRefGoogle Scholar
  20. 20.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  21. 21.
    Roebben G, Basu B, Vleugels J, Van Humbeeck J, Van der Biest O (2000) J Alloys Compd 310:284CrossRefGoogle Scholar
  22. 22.
    Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119CrossRefGoogle Scholar
  23. 23.
    Bánhegyi G (1986) Colloid Polym Sci 264:1030CrossRefGoogle Scholar
  24. 24.
    Vanmeensel K, Laptev A, Van der Biest O, Vleugels J (2007) Acta Mater 55:1401CrossRefGoogle Scholar
  25. 25.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44:5893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • K. Vanmeensel
    • 1
  • S. G. Huang
    • 1
  • A. Laptev
    • 2
  • S. A. Salehi
    • 1
  • A. K. Swarnakar
    • 1
  • O. Van der Biest
    • 1
  • J. Vleugels
    • 1
  1. 1.Department of Metallurgy and Materials Engineering (MTM)K.U.LeuvenHeverlee (Leuven)Belgium
  2. 2.Department of Mechanical EngineeringDonbass State Engineering AcademyKramatorskUkraine

Personalised recommendations