Skip to main content
Log in

Pulsed electric current sintering of electrically conductive ceramics

  • Proceedings of the Symposium on Spark Plasma Synthesis and Sintering
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The processing of yttria-stabilised zirconia (Y-ZrO2)-based ceramic nanocomposites by means of pulsed electric current sintering (PECS) is described. A nanometer-sized electrically conductive secondary TiCN phase was added to the insulating zirconia matrix in order to make the composite electrically conductive. The paper focuses on the importance of processing conditions and highlights the benefits of the PECS method as compared to more traditional hot pressing. The mechanical and microstructural properties of the ZrO2–TiCN composites have been determined, and the benefits of using an electrical current to densify these composites were explained in terms of the evolution of the electrical properties of the densifying powder compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Garvie RC, Hannink RHJ, Pascoe RT (1975) Nature 258:703

    Article  CAS  Google Scholar 

  2. Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461

    Article  CAS  Google Scholar 

  3. Basu B, Vleugels J, Van der Biest O (2002) Key Eng Mater 206–213:1177

    Google Scholar 

  4. Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:3269

    Article  CAS  Google Scholar 

  5. Basu B, Vleugels J, Van der Biest O (2002) J Alloys Compd 334:200

    Article  CAS  Google Scholar 

  6. Vleugels J, Van der Biest O (1999) J Am Ceram Soc 82:2717

    Article  CAS  Google Scholar 

  7. Vanmeensel K, Sastry KY, Laptev A, Vleugels J, Van der Biest O (2005) Solid State Phenom 106:153

    Article  CAS  Google Scholar 

  8. Salehi S, Van der Biest O, Vleugels J (2006) J Eur Ceram Soc 26(15):3173

    Article  CAS  Google Scholar 

  9. Rul S, Lefevre-Schlick F, Capria E, Laurent C, Peigney A (2004) Acta Mater 52:1061

    Article  CAS  Google Scholar 

  10. Jiang D, Van der Biest O, Vleugels J (2007) J Eur Ceram Soc 27:1247

    Article  CAS  Google Scholar 

  11. Duan RG, Kuntz JD, Garay JE, Mukherjee AK (2004) Scripta Mater 50:1309

    Article  CAS  Google Scholar 

  12. Kawano S, Takahashi J, Shimada S (2004) J Eur Ceram Soc 24:309

    Article  CAS  Google Scholar 

  13. Mayo MJ (2000) Adv Eng Mater 2:409

    Article  CAS  Google Scholar 

  14. Guo Z, Blugan G, Kirchner R, Reece M, Graule T, Kuebler J (2007) Ceram Int 33:1223

    Article  CAS  Google Scholar 

  15. Kear BH, Colaizzi J, Mayo WE, Liao SC (2001) Scripta Mater 44:2065

    Article  CAS  Google Scholar 

  16. Angerer P, Yu LG, Khor KA, Krumpel G (2004) Mater Sci Eng A 381:16

    Article  Google Scholar 

  17. Nygren M, Shen Z (2003) Solid State Sci 5:125

    Article  CAS  Google Scholar 

  18. Basu B, Vleugels J, Van der Biest O (2004) Mater Sci Eng A 380:215

    Article  Google Scholar 

  19. Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Acta Mater 53:4379

    Article  CAS  Google Scholar 

  20. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533

    Article  CAS  Google Scholar 

  21. Roebben G, Basu B, Vleugels J, Van Humbeeck J, Van der Biest O (2000) J Alloys Compd 310:284

    Article  CAS  Google Scholar 

  22. Toraya H, Yoshimura M, Somiya S (1984) J Am Ceram Soc 67:C119

    CAS  Google Scholar 

  23. Bánhegyi G (1986) Colloid Polym Sci 264:1030

    Article  Google Scholar 

  24. Vanmeensel K, Laptev A, Van der Biest O, Vleugels J (2007) Acta Mater 55:1401

    Article  Google Scholar 

  25. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44:5893

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed within the framework of the Research Fund of K.U.Leuven under project GOA/08/007 and FWO project grant number 3E060133. K. Vanmeensel thanks the Fund for Scientific Research Flanders (FWO), S. Salehi thanks the Research Council of K.U.Leuven for a doctoral scholarship (DB/07/012) and A Laptev acknowledges the Research Council of K.U.Leuven for his research fellowship. The authors also acknowledge the support of the Belgian Federal Science Policy Office (BELSPO) through the NACER project (contract P2/00/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vleugels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanmeensel, K., Huang, S.G., Laptev, A. et al. Pulsed electric current sintering of electrically conductive ceramics. J Mater Sci 43, 6435–6440 (2008). https://doi.org/10.1007/s10853-008-2631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2631-0

Keywords

Navigation