Skip to main content
Log in

Microstructure evolution upon annealing of accumulative roll bonding (ARB) 1100 Al sheet materials: evolution of interface microstructures

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure evolution upon annealing of 1100 aluminum samples that were accumulative roll bonding (ARB) processed were studied with the use of transmission electron microscopy. It was found that the ultra-fine microstructure resulted from the ARB process was not stable. Specifically, a two-stage grain growth behavior was observed, in which a relatively slower rate of grain growth was followed by a more rapid grain growth rate at higher annealing temperature. The bonding interfaces that were unique to the roll bonding process were found to have a significant influence on the grain growth behavior when the grain size of the material was of similar dimension as the bonding interface separation. Discontinuous pockets consisting of smaller grains were found to have formed upon annealing. These pockets represented the remnants of the heavily deformed layer from wire brushing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221. doi:https://doi.org/10.1016/S1359-6462(98)00302-9

    Article  CAS  Google Scholar 

  2. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579. doi:https://doi.org/10.1016/S1359-6454(98)00365-6

    Article  CAS  Google Scholar 

  3. Vaidyanath LR, Milner DR (1960) Brit Weld J 7:1

    Google Scholar 

  4. Clemensen C, Juelstorp O, Bay N (1986) Metal Constr 18:625

    CAS  Google Scholar 

  5. Nicholas MG, Milner DR (1961) Brit Weld J 8:375

    Google Scholar 

  6. Xing ZP, Kang SB, Kim HW (2004) J Mater Sci 39:1259. doi:https://doi.org/10.1023/B:JMSC.0000013884.69611.72

    Article  CAS  Google Scholar 

  7. Xing ZP, Kang SB, Kim HW (2002) Metall Mater Trans A 33:1521. doi:https://doi.org/10.1007/s11661-002-0074-9

    Article  Google Scholar 

  8. Lee S-H, Lee CH,Lim CY (2004) Mater Sci Forum 449–452:161

  9. Cao WQ, Liu Q, Godfrey A, Hansen N (2002) Mater Sci Forum 408–412:721

  10. Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng A 340:265

    Article  Google Scholar 

  11. Kim Y-S, Lee T-O, Shin DH (2004) Mater Sci Forum 449–452:625

    Article  Google Scholar 

  12. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scr Mater 47:893

    Article  CAS  Google Scholar 

  13. Tsuji N, Ito Y, Nakshima H, Yoshida F, Minamino Y (2002) Mater Sci Forum 396–402:423

    Article  Google Scholar 

  14. Kamikawa N, Tsuji N, Huang X, Hansen N (2006) Acta Mater 54:3055

    Article  CAS  Google Scholar 

  15. Kim H-W, Kang S-K, Tsuji N, Minamino Y (2005) Acta Mater 53:1737

    Article  CAS  Google Scholar 

  16. Kim H-W, Kang S-K, Tsuji N, Minamino Y (2006) Mater Sci Forum 512:85

    Article  Google Scholar 

  17. Jang YH, Kim SS, Han SZ, Lim CY, kim CJ, Goto M (2005) J Mater Sci 40:3527

    Article  CAS  Google Scholar 

  18. Jang YH, Kim SS, Han SZ, Lim CY, Kim CJ, Goto M (2005) Scr Mater 52:21

    Article  CAS  Google Scholar 

  19. Lee SH, Han SZ, Lim CY (2006) Key Eng Mater 317–318:239

    Article  Google Scholar 

  20. Tsuji N, Okuno S, Matsuura T, Koizumi Y, Minamino Y (2003) Mater Sci Forum 426–432:2667

    Article  Google Scholar 

  21. Tsuji N (2006) In: Altan BS (ed) Severe plastic deformation. Nova Science Publishers, pp 545–565

  22. Vaidyanath LR, Nicholas MG, Milner DR (1959) Brit Weld J 6:13

    Google Scholar 

  23. Bay N (1986) Metal Constr 18:369

    CAS  Google Scholar 

  24. Kwan C, Wang Z, Kang S-B (2007) Mater Sci Eng A 480:148. doi:https://doi.org/10.1016/j.msea.2007.07.022C

Download references

Acknowledgements

The authors would like to acknowledge Dr. Suk-Bong Kang of The Korean Institute of Material Sciences for providing the samples used in this study. This project is funded by Natural Science and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwan, C., Wang, Z. Microstructure evolution upon annealing of accumulative roll bonding (ARB) 1100 Al sheet materials: evolution of interface microstructures. J Mater Sci 43, 5045–5051 (2008). https://doi.org/10.1007/s10853-008-2614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2614-1

Keywords

Navigation