Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4198–4207 | Cite as

Synthesis of lamellar mesostructured calcium phosphates using n-alkylamines as structure-directing agents in alcohol/water mixed solvent systems

  • Nobuaki Ikawa
  • Yasunori Oumi
  • Tatsuo Kimura
  • Takuji Ikeda
  • Tsuneji Sano
Article

Abstract

Lamellar mesostructured calcium phosphates constructed by ionic bonds were prepared by using n-alkylamines (n-C n H2n+1NH2, n = 8–18) at room temperature in the mixed solvent systems of aliphatic alcohol (C n H2n+1OH, n = 1–4) and water, and the synthetic conditions were investigated in detail. The mixed solvent systems suppressed the formation of crystalline calcium phosphates like brushite (CaHPO4·2H2O) and monetite (CaHPO4) at low temperatures, successfully affording pure lamellar mesostructured calcium phosphates. Other crystalline phases such as hydroxyapatite (Ca10(PO4)6(OH)2) were not formed under the conditions with the Ca/P molar ratios in the range of 0.7–1.0 in the starting mixtures. The Ca/P molar ratio of the lamellar mesostructured calcium phosphates was ca. 1.0, calculated by ICP and 31P MAS NMR data. Interestingly, the kind of alcohols strongly influenced the solubilities of calcium phosphate species and n-alkylamines, and then lamellar mesostructured phases were obtained with some morphological variation.

Keywords

EtOH Calcium Phosphate Calcium Hydroxide Alkyl Chain Length Aliphatic Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988. doi: 10.1246/bcsj.63.988 CrossRefGoogle Scholar
  2. 2.
    Inagaki S, Fukushima Y, Kudoda K (1993) J Chem Soc Chem Commun 680. doi: 10.1039/c39930000680
  3. 3.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710. doi: 10.1038/359710a0 CrossRefGoogle Scholar
  4. 4.
    Beck S, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834. doi: 10.1021/ja00053a020 CrossRefGoogle Scholar
  5. 5.
    Zhao D, Feng L, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548. doi: 10.1126/science.279.5350.548 CrossRefGoogle Scholar
  6. 6.
    Zhao XS, Lu GQ, Millar GJ (1996) Ind Eng Chem Res 35:2075. doi: 10.1021/ie950702a CrossRefGoogle Scholar
  7. 7.
    Selvam P, Bhatia SK, Sonwane CG (2001) Ind Eng Chem Res 40:3237. doi: 10.1021/ie0010666 CrossRefGoogle Scholar
  8. 8.
    Sayari A (1996) Chem Mater 8:1840. doi: 10.1021/cm950585± CrossRefGoogle Scholar
  9. 9.
    Corma A (1997) Chem Rev 97:2373. doi: 10.1021/cr960406n CrossRefGoogle Scholar
  10. 10.
    Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1. doi: 10.1016/j.micromeso.2004.06.030 CrossRefGoogle Scholar
  11. 11.
    Schüth F (2003) Angew Chem Int Ed 42:3604. doi: 10.1002/anie.200300593 CrossRefGoogle Scholar
  12. 12.
    Monma H (1995) Inorg Mater 2:401Google Scholar
  13. 13.
    Rodriguez-Lorenzo LM, Vallet-Regi M (2000) Chem Mater 12:2460. doi: 10.1021/cm001033g CrossRefGoogle Scholar
  14. 14.
    Uota M, Arakawa H, Kitamura N, Yoshimura T, Tanaka J, Kijima T (2005) Langmuir 21:4724. doi: 10.1021/la050029m CrossRefGoogle Scholar
  15. 15.
    Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM (2006) J Mater Chem 16:26. doi: 10.1039/b509744d CrossRefGoogle Scholar
  16. 16.
    Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324. doi: 10.1126/science.268.5215.1324 CrossRefGoogle Scholar
  17. 17.
    Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147. doi: 10.1021/cm960137h CrossRefGoogle Scholar
  18. 18.
    Behrens P (1996) Angew Chem Int Ed 35:515. doi: 10.1002/anie.199605151 CrossRefGoogle Scholar
  19. 19.
    Sayari A, Liu P (1997) Micropor Mater 12:149. doi: 10.1016/S0927-6513(97)00059-X CrossRefGoogle Scholar
  20. 20.
    Schüth F (2001) Chem Mater 13:3184. doi: 10.1021/cm011030j CrossRefGoogle Scholar
  21. 21.
    Tiemann M, Fröba M (2001) Chem Mater 13:3211. doi: 10.1021/cm0110371 CrossRefGoogle Scholar
  22. 22.
    Kimura T (2005) Micropor Mesopor Mater 77:97. doi: 10.1016/j.micromeso.2004.08.023 CrossRefGoogle Scholar
  23. 23.
    Yu C, Tian B, Zhao D (2003) Curr Opin Solid State Mater Sci 7:191. doi: 10.1016/j.cossms.2003.10.004 CrossRefGoogle Scholar
  24. 24.
    Gao Q, Xu R, Chen J, Li R, Li S, Qui S, Yue YJ (1997) Chem Mater 9:457. doi: 10.1021/cm9602611 CrossRefGoogle Scholar
  25. 25.
    Kimura T, Sugawara Y, Kuroda K (1999) Chem Mater 11:508. doi: 10.1021/cm981036h CrossRefGoogle Scholar
  26. 26.
    Mal NK, Fujiwara M, Ichikawa S, Kuraoka K (2002) J Ceram Soc Jpn 110:890Google Scholar
  27. 27.
    Mal NK, Ichikawa S, Fujiwara M (2003) Chem Commun 872. doi: 10.1039/b300323j
  28. 28.
    Roca M, Haskouri JE, Cabrera S, Beltrán-Porter A, Alamo J, Beltrán-Porter D, Macros MD, Amorós P (1998) Chem Commun 1883. doi: 10.1039/a803896a
  29. 29.
    Dasgupta S, Agarwal M, Datta A (2002) J Mater Chem 12:162. doi: 10.1039/b109472f CrossRefGoogle Scholar
  30. 30.
    Jiménez-Jiménez J, Maireles-Torres P, Olivera-Pastor P, Rodríguez-Castellón E, Jiménez-López A, Jones DJ, Rozière J (1998) Adv Mater 10:812. doi: 10.1002/(SICI)1521-4095(199807)10:10≤812::AID-ADMA812≥3.0.CO;2-A CrossRefGoogle Scholar
  31. 31.
    Jones DJ, Aptel G, Brandhorst M, Jacquin M, Jiménez-Jiménez J, Jiménez-López A, Maireles-Torres P, Piwonski I, Rodríguez-Castellón E, Zajac J, Rozière J (2000) J Mater Chem 10:1957. doi: 10.1039/b002474k CrossRefGoogle Scholar
  32. 32.
    Bhaumik A, Inagaki S (2001) J Am Chem Soc 123:691. doi: 10.1021/ja002481s CrossRefGoogle Scholar
  33. 33.
    Guo X, Ding W, Wang X, Yan Q (2001) Chem Commun 709. doi: 10.1039/b100630o
  34. 34.
    Chang J-S, Park S-E, Gao Q, Férey G, Cheetham AK (2001) Chem Commun 859. doi: 10.1039/b009160j
  35. 35.
    Tarafdar A, Biswas S, Pramanik NK, Pramanik P (2006) Micropor Mesopor Mater 89:204. doi: 10.1016/j.micromeso.2005.10.027 CrossRefGoogle Scholar
  36. 36.
    Mal NK, Ichikawa S, Fujiwara M (2002) Chem Commun 112. doi: 10.1039/b109948e
  37. 37.
    Ozin GA, Varaksa N, Coombs N, Davies JE, Perovic DD, Ziliox M (1997) J Mater Chem 7:1601. doi: 10.1039/a702416i CrossRefGoogle Scholar
  38. 38.
    Soten I, Ozin GA (1999) J Mater Chem 9:703. doi: 10.1039/a806045b CrossRefGoogle Scholar
  39. 39.
    Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh B (2003) J Mater Chem 13:3053. doi: 10.1039/b308801d CrossRefGoogle Scholar
  40. 40.
    Schmidt SM, McDonald J, Pineda ET, Verwilst AM, Chen Y, Josephs R, Ostefin AE (2006) Micropor Mesopor Mater 94:330. doi: 10.1016/j.micromeso.2006.04.006 CrossRefGoogle Scholar
  41. 41.
    Tokuoka Y, Ito Y, Kitahara K, Niikura Y, Ochiai A, Kawashima N (2006) Chem Lett 35:1220. doi: 10.1246/cl.2006.1220 CrossRefGoogle Scholar
  42. 42.
    Zhao YF, Ma J (2005) Micropor Mesopor Mater 87:110. doi: 10.1016/j.micromeso.2005.07.046 CrossRefGoogle Scholar
  43. 43.
    Ikawa N, Oumi Y, Kimura T, Ikeda T, Sano T (2006) Chem Lett 35:948. doi: 10.1246/cl.2006.948 CrossRefGoogle Scholar
  44. 44.
    Eanes ED, Gillessen IH, Posner AS (1965) Nature 208:365. doi: 10.1038/208365a0 CrossRefGoogle Scholar
  45. 45.
    Oliver SRJ, Ozin GA (1998) J Mater Chem 8:1081. doi: 10.1039/a708598b CrossRefGoogle Scholar
  46. 46.
    Sivakumar GR, Girija EK, Karukura SN, Subramanian C (1998) Cryst Res Technol 33:197. doi: 10.1002/(SICI)1521-4079(1998)33:2≤197::AID-CRAT197≥3.0.CO;2-K CrossRefGoogle Scholar
  47. 47.
    Larson MJ, Thorsen A, Jensen SJ (1985) Calcif Tissue Int 37:189. doi: 10.1007/BF02554840 CrossRefGoogle Scholar
  48. 48.
    Kim S, Ryu HS, Shin H, Jung HS, Hong KS (2005) Mater Chem Phys 91:500. doi: 10.1016/j.matchemphys.2004.12.016 CrossRefGoogle Scholar
  49. 49.
    Aue WP, Roufosse AH, Glimcher MJ, Griffin RG (1984) Biochemistry 23:6110. doi: 10.1021/bi00320a032
  50. 50.
    Miquel JL, Facchini L, Legrand AP, Rey C, Lemaitre J (1990) Colloids Surfaces 45:427. doi: 10.1016/0166-6622(90)80041-2 CrossRefGoogle Scholar
  51. 51.
    Furuichi K, Oaki Y, Imai H (2006) Chem Mater 18:229. doi: 10.1021/cm052213z CrossRefGoogle Scholar
  52. 52.
    Simonutti R, Comotti A, Bracco S, Sozzani P (2001) Chem Mater 13:771. doi: 10.1021/cm001088i CrossRefGoogle Scholar
  53. 53.
    Kooli F, Mianhui L, Alshahateet SF, Chen F, Yinghuai Z (2006) J Phys Chem Solids 67:926. doi: 10.1016/j.jpcs.2006.01.005 CrossRefGoogle Scholar
  54. 54.
    Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nobuaki Ikawa
    • 1
  • Yasunori Oumi
    • 1
  • Tatsuo Kimura
    • 2
  • Takuji Ikeda
    • 3
  • Tsuneji Sano
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
  3. 3.AISTSendaiJapan

Personalised recommendations