Advertisement

The effect of molybdenum on the microstructure and creep behavior of Ti–24Al–17Nb–xMo alloys and Ti–24Al–17Nb–xMo SiC-fiber composites

  • J. P. Quast
  • C. J. Boehlert
Commonality of Phenomena in Composite Materials

Abstract

The effect of molybdenum (Mo) on the microstructure and creep behavior of nominally Ti–24Al–17Nb (at.%) alloys and their continuously reinforced SiC-fiber composites (fiber volume fraction = 0.35) was investigated. Constant-load, tensile-creep experiments were performed in the stress range of 10–275 MPa at 650 °C in air. A Ti–24Al–17Nb–2.3Mo (at.%) alloy exhibited significantly greater creep resistance than a Ti–24Al–17Nb–0.66Mo (at.%) alloy, and correspondingly a 90°-oriented Ultra SCS-6/Ti–24Al–17Nb–2.3Mo metal matrix composite (MMC) exhibited significantly greater creep resistance than an Ultra SCS-6/Ti–24Al–17Nb–0.66Mo MMC. Thus, the addition of 2.3 at.% Mo significantly improved the creep resistance of both the alloy and the MMC. An Ultra SCS-6 Ti–25Al–17Nb–1.1Mo (at.%) MMC exhibited creep resistance similar to that of the Ultra SCS-6/Ti–25Al–17Nb–2.3Mo (at.%). Using a modified Crossman model, the MMC secondary creep rates were predicted from the monolithic matrix alloys’ secondary creep rates. For identical creep temperatures and applied stresses, the 90°-oriented MMCs exhibited greater creep rates than their monolithic matrix alloy counterparts. This was explained to be a result of the low interfacial bond strength between the matrix and the fiber, measured using a cruciform test methodology, and was in agreement with the modified Crossman model. Scanning electron microscopy observations indicated that debonding occurred within the carbon layers of the fiber-matrix interface.

Keywords

Creep Rate Metal Matrix Composite Creep Resistance Matrix Alloy Fiber Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Dr. Michael Shepard (Air Force Research Laboratory) and Mr. Paul Smith for their guidance.

References

  1. 1.
    Jansson S, Dève HE, Evans AG (1991) Metall Trans 22A:2975Google Scholar
  2. 2.
    Larsen JM, Russ SM, Jones JW (1995) Metall Mater Trans 26A:3211CrossRefGoogle Scholar
  3. 3.
    Russ SM, Larsen JM, Smith PR (1995) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-95-4068, Wright-Patterson Air Force Base, OH, pp 162–183Google Scholar
  4. 4.
    Rosenberger AH, Smith PR, Russ SM (1997) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-97-4082, Wright-Patterson Air Force Base, OH, pp 198–211Google Scholar
  5. 5.
    Krishnamurthy S, Smith PR, Miracle DB (1998) Mater Sci Eng A243:285Google Scholar
  6. 6.
    Carrère N, Kruch S, Vassel A, Chaboche J-L (2002) Int J Damage Mech 11:41CrossRefGoogle Scholar
  7. 7.
    Majumdar BS (1997) In: Mall S, Nicholas T (eds) Titanium matrix composites. Technomic Publications, Lancaster, pp 113–168Google Scholar
  8. 8.
    Smith PR, Graves JA, Rhodes CG (1994) Metall Mater Trans 25A:1267CrossRefGoogle Scholar
  9. 9.
    Feillard P (1996) Acta Metall 44(2):643Google Scholar
  10. 10.
    Ghosh S, Ling Y, Majumdar B, Kim R (2000) Mech Mater 32:561CrossRefGoogle Scholar
  11. 11.
    Miracle DB, Majumdar BS (1999) Metall Mater Trans A30:301CrossRefGoogle Scholar
  12. 12.
    Chatterjee A, Roessler JR, Brown LE, Heitman PW, Richardson GE (1997) In: Nathal MV, Darolia R, Liu CT, Martin PL, Miracle DB, Wagner R, Yamaguchi M (eds) Proceedings of the second international symposium on structural intermetallics. TMS, pp 905–911Google Scholar
  13. 13.
    Majumdar BS (1999) Mater Sci Eng A259:171Google Scholar
  14. 14.
    Quast JP, Boehlert CJ (2006) Metall Mater Trans 38A:529Google Scholar
  15. 15.
    Krishnamurthy S, James MR, Smith PR, Miracle DB (1995) In: Poursartip A, Street KN (eds) Proceedings from the 10th international conference of composite materials. Woodhead Publishing Ltd., Vancouver, pp 739–746Google Scholar
  16. 16.
    Smith PR, Graves JA (1995) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-95–4068, Wright-Patterson Air Force Base, OH, pp 139–149Google Scholar
  17. 17.
    Krishnamurthy S, Smith PR, Miracle DB (1995) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-95-4068, Wright-Patterson Air Force Base, OH, pp 83–104Google Scholar
  18. 18.
    Zhang JW, Lee CS, Zou DX, Li SQ, Lai JKL (1998) Metall Mater Trans 29A:559CrossRefGoogle Scholar
  19. 19.
    Majumdar BS, Grundel DB, Dutton RE, Warrier SG, Pagano NJ (1998) J Am Ceram Soc 81(6):1600Google Scholar
  20. 20.
    Boehlert CJ, Majumdar BS, Miracle DB (2001) Metall Mater Trans 32A:3143CrossRefGoogle Scholar
  21. 21.
    Warrier SG, Majumdar BS, Miracle DB (1997) Acta Mater 45(12):4969CrossRefGoogle Scholar
  22. 22.
    Gundel DB, Majumdar BS, Miracle DB (1995) In: Poursartip A, Street KN (eds) Proceedings of the tenth international conference on composite materials. Woodhead Publishing, Ltd., Cambridge, UK, pp 703–710Google Scholar
  23. 23.
    Gundel DB, Majumdar BS, Miracle DB (1995) Scr Metall Mater 33:2057CrossRefGoogle Scholar
  24. 24.
    Warrier SG, Gundel DB, Majumdar BS, Miracle DB (1996) Metall Mater Trans 27A:2035CrossRefGoogle Scholar
  25. 25.
    Gundel DB, Miracle DB, (1998) Compos Sci Technol 58:1571CrossRefGoogle Scholar
  26. 26.
    Gundel DB, Warrier SG, Miracle DB (1997) Acta Mater 45(3):1275CrossRefGoogle Scholar
  27. 27.
    Warrier SG, Gundel DB, Majumdar BS, Miracle DB (1996) Scr Metall 34(2):293CrossRefGoogle Scholar
  28. 28.
    Crossman FW, Karlak RF, Barnett DM (1974) In: Fleck JN, Mehan RL (eds) AIME symposium proceedings, TMS, pp 8–31Google Scholar
  29. 29.
    Smith PR, Gambone ML, Williams DS, Garner DI (1997) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-97-4082, Wright-Patterson Air Force Base, OH, pp 1–28Google Scholar
  30. 30.
    Rosenberger AH, Smith PR, Russ SM (1997) In: Proceedings from orthorhombic titanium matrix composites workshop, WL-TR-97-4082, Wright-Patterson Air Force Base, OH, pp 198–211Google Scholar
  31. 31.
    Niemann JT, Edd JF (1991) In: Proceedings from titanium aluminide composite workshop, WL-TR-91-4020, Wright-Patterson Air Force Base, OH, pp 300–314Google Scholar
  32. 32.
    Smith PR, Porter WJ (1997) J Mater Sci 32:6215CrossRefGoogle Scholar
  33. 33.
    Boehlert CJ, Majumdar BS, Krishnamurthy S, Miracle DB (1997) Metall Mater Trans 28A:309CrossRefGoogle Scholar
  34. 34.
    Hartman GA, Russ SM (1989) In: Johnson WS (ed) Metal matrix composites: testing, analysis and failure modes. American Society for Testing and Materials, Philadelphia, pp 43–53Google Scholar
  35. 35.
    Boehlert CJ, Cowen CJ, Tamirisakandala S, McEldowney DJ, Miracle DB (2006) Scr Mater 55:465CrossRefGoogle Scholar
  36. 36.
    Pearson K (1896) Philos Trans R Soc Lond Ser A 187:253CrossRefGoogle Scholar
  37. 37.
    Smith PR, Rosenberger A, Shepard MJ, Wheeler R (2000) J Mater Sci 35:3169. doi: 10.1023/A:1004833629778 Google Scholar
  38. 38.
    Rhodes CG, Smith PR, Hanusiak WH, Shephard MJ (2000) Metall Mater Trans 31A:2931CrossRefGoogle Scholar
  39. 39.
    Smith PR, Rosenberger A, Shepard MJ (1999) Scr Metall 41(2):221CrossRefGoogle Scholar
  40. 40.
    Krishnamurhty S, Miracle DB (1997) In: Scott ML (ed) Proceedings of the 11th international conference on composite materials (ICCM-11), vol 3. Woodhead Publishing, Cambridge, pp 399–408Google Scholar
  41. 41.
    Majumdar BS, Boehlert CJ, Miracle DB (1995) In: Proceedings of the orthorhombic titanium matrix composites workshop, WL-TR-95-4068, Wright-Patterson Air Force Base, OH, pp 65–82Google Scholar
  42. 42.
    Morscher G, Pirouz P, Heuer H (1990) J Am Cer Soc 73(3):713Google Scholar
  43. 43.
    Warrier SG, Majumdar BS, Gundel DB, Miracle DB (1997) Acta Metall 45(8):3469Google Scholar
  44. 44.
    Hall EC, Ritter AM (1993) J Mater Res 8(5):1158CrossRefGoogle Scholar
  45. 45.
    Wu X, Cooper C, Bowen P (2001) Metall Mater Trans 32A:1851CrossRefGoogle Scholar
  46. 46.
    Wu X, Mori H, Bowen P (2001) Metall Mater Trans 32A:1841CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations