Journal of Materials Science

, Volume 43, Issue 12, pp 4175–4181 | Cite as

Particle size dependence of optical and defect parameters in mechanically milled Fe2O3

  • Mahuya Chakrabarti
  • A. Banerjee
  • D. Sanyal
  • Manas Sutradhar
  • Alok Chakrabarti


Fe2O3 of particle sizes ranging from 120 to 20 nm has been prepared by the ball-milling process using different milling hour. X-ray diffraction technique and transmission electron microscopy have been used for determining the average particle sizes of the prepared samples. Direct optical band gap for the unmilled and the ball-milled samples has been calculated from the optical absorption data. A red shift in the band gap due to the reduction of particle size has been observed. The coincidence Doppler broadening of the electron positron annihilation γ-radiation spectroscopy has been employed to identify the nature of defects generated due to the ball-milling process.


Milling Decrease Particle Size Core Electron Milled Sample Defect Parameter 



M. Chakrabarti and M. Sutradhar gratefully acknowledge CSIR, Government of India, for providing financial assistance. A. Banerjee gratefully acknowledges Prof. S. K. Pradhan, Department of Physics, Burdwan University, for his valuable suggestions. The authors are thankful to Prof. G. N. Mukherjee, Department of Chemistry, University of Calcutta, for the optical measurement. The authors are also thankful to Mr. P. Ray, SINP, Kolkata, for the TEM measurement and A. Kar Mahapatra, SINP, Kolkata, for the XRD measurement.


  1. 1.
    Henglin A (1989) Chem Rev 89:1861CrossRefGoogle Scholar
  2. 2.
    Hinds KA et al (2003) Blood 102:867; Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Biomaterials 21:1411Google Scholar
  3. 3.
    Jones DH (1989) Hyperfine Interact 47:289CrossRefGoogle Scholar
  4. 4.
    Mimura N, Takahara I, Saito M, Hattori T, Ohkuma K, Ando M (1998) Catal Today 45:61CrossRefGoogle Scholar
  5. 5.
    Huo L, Li W, Lu L, Cui H, Xi S, Wang J, Zhao B, Shen Y, Lu Z (2000) Chem Mater 12:790CrossRefGoogle Scholar
  6. 6.
    Zboril R, Mashlan M, Petridis D (2002) Chem Mater 14:969CrossRefGoogle Scholar
  7. 7.
    Pascual R, Sayer M, Kumar CVRV, Zou L (1991) J Appl Phys 70:2348CrossRefGoogle Scholar
  8. 8.
    Wang X, Chen X, Ma XC, Zheng H, Ji M, Zhang Z (2004) Chem Phys Lett 384:391CrossRefGoogle Scholar
  9. 9.
    Kim ET, Yoon SG (1993) Thin Solid Films 227:7CrossRefGoogle Scholar
  10. 10.
    Bokhimi X, Morales A, Portilla M, Gracia-Ruiz A (1999) Thin Solid Films 12:589Google Scholar
  11. 11.
    Luo WG, Ding AL, Li H (1995) Integr Ferroelectr 9:75CrossRefGoogle Scholar
  12. 12.
    Birringer R, Gleiter H, Klein HP, Marquardt P (1984) Phys Lett A 102:365CrossRefGoogle Scholar
  13. 13.
    Michel D, Gaffet E, Berther P (1995) Nanostruct Mater 6:667CrossRefGoogle Scholar
  14. 14.
    Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal D, Chakrabarti A (2005) J Mater Sci 40:5265. doi: 10.1007/s10853-005-0743-3 CrossRefGoogle Scholar
  15. 15.
    Chakrabartii M, Dutta S, Chattopadhyay S, Sarkar A, Sanyal D, Chakrabarti A (2004) Nanotechnology 15:1792CrossRefGoogle Scholar
  16. 16.
    Zhang BQ, Lu L, Lai MO (2003) Physica B 325:120CrossRefGoogle Scholar
  17. 17.
    Hautojarvi P, Corbel C (1995) In: Dupasquier A, Mills AP Jr (eds) Positron spectroscopy of solids. IOS Press, Amsterdam, p 491; In: Krause-Rehberg R, Leipner HS (eds) Positron annihilation in semiconductors, Springer Verlag, Berlin, 1999Google Scholar
  18. 18.
    Lynn KG, Goland AN (1976) Solid State Commun 18:1549CrossRefGoogle Scholar
  19. 19.
    Williamson GK, Hall WH (1953) Acta Metall 1:22CrossRefGoogle Scholar
  20. 20.
    Chakrabarti M, Sarkar A, Chattopadhyay S, Sanyal D (2006) In: Martins BP (ed) New topics in superconductivity research. Nova Science, New YorkGoogle Scholar
  21. 21.
    Chakrabarti M, Sanyal D, Chakrabarti A (2007) J Phys Condens Matter 19:236210CrossRefGoogle Scholar
  22. 22.
    Sanyal D, Chakrabarti M, Roy TK, Chakrabarti A (2007) Phys Lett A 371:482CrossRefGoogle Scholar
  23. 23.
    Pancove J (1979) Optical processes in semiconductors. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  24. 24.
    Dakhel AA, Henari FZ (2003) Cryst Res Technol 38:979CrossRefGoogle Scholar
  25. 25.
    Tauc J (1970) Mater Sci Bull 5:72Google Scholar
  26. 26.
    Dutta S, Chattopadhyay S, Sutradhar M, Sarkar A, Chakrabarti M, Sanyal D, Jana D (2007) J Phys Condens Matter 19:236218CrossRefGoogle Scholar
  27. 27.
    Srikant V, Clarke DR (1997) J Appl Phys 81:6357CrossRefGoogle Scholar
  28. 28.
    Puska MJ, Nieminen RM (1994) Rev Mod Phys 66:841CrossRefGoogle Scholar
  29. 29.
    Myler U, Simpson PJ (1997) Phys Rev B 56:14303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mahuya Chakrabarti
    • 1
  • A. Banerjee
    • 2
  • D. Sanyal
    • 1
  • Manas Sutradhar
    • 3
  • Alok Chakrabarti
    • 1
  1. 1.Variable Energy Cyclotron CentreKolkataIndia
  2. 2.Department of PhysicsUniversity of BurdwanGolapbag, BurdwanIndia
  3. 3.Department of ChemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations