Skip to main content
Log in

Investigation of the thermomechanical properties of industrial refractories: the French programme PROMETHEREF

  • Rees Rawlings Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper summarises the work that has been done in the framework of the French programme PROMETHEREF. This programme was concerned with the thermomechanical properties at high temperature of two industrial refractories: fused-cast materials for glass melting and alumina castables for steel production. At high temperature, both materials exhibit creep, that has been characterised by tension, compression and bending tests. The microstructural mechanisms of deformation have been investigated and allowed the macroscopic viscoplasticity to be understood. Both types of materials exhibit damage processes that have also been characterised mechanically and microstructurally. The nature and the adhesion of the aggregates have been shown to have a great influence on the mechanical behaviour of the castables, as well as the continuous zirconia skeleton observed in high-zirconia fused-cast refractories by X-rays tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Boussuge M (2004) PROMETHEREF: a French research program for the study of thermomechanical properties of industrial refractories. Euro-Ceramics 8, 8th European ceramic society conf. proc, Istanbul, Turkey, June 29–July 3 2003, Key Eng Mater, vol 264–268, Part 3, p 1755

    Article  CAS  Google Scholar 

  2. Boussuge M (2003) Study of thermomechanical properties of industrial refractories: the French program PROMETHEREF. UNITECR ‘03, proceedings of the 8th unified international technical conference on refractories, Osaka, Japan, 19–22 October, p 513

  3. Boussuge M (2004) Thermomechanical behaviour: from ceramics to refractories. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 605

  4. Massard L (2005) Etude du fluage de réfractaires électrofondus du système alumine-zircone-silice. PhD Thesis, Ecole des Mines de Paris

  5. Madi K (2006) Influence de la morphologie tridimensionnelle des phases sur le comportement mécanique de réfractaires électrofondus. PhD Thesis, Ecole des Mines de Paris

  6. Lataste E (2005) Comportement mécanique et endommagement de réfractaires électrofondus sous sollicitation thermomécanique. PhD Thesis, INSA Lyon

  7. Yeugo-Fogaing E (2006) Caractérisation à haute température des propriétés d’élasticité de réfractaires électrofondus et de bétons réfractaires. PhD Thesis, Université de Limoges

  8. Marzagui H (2005) Etude de deux bétons réfractaires silico-alumineux: microstructures et comportements thermomécaniques en traction et en flexion. PhD Thesis, Ecole des Mines d’Albi-Carmaux

  9. Roosefid M (2006) Etude du comportement thermomécanique de deux bétons réfractaires silico-alumineux: applications à une poche d’aciérie. PhD Thesis, Institut National Polytechnique de Grenoble

  10. Begley ER, Herndon PO (1971) Zirconia–alumina–silica refractories. In: Alper AM (ed) High temperature oxides, vol. 5-IV, Academic Press, p 185

  11. Duvierre G, Boussant-Roux Y, Nelson M (1999) Fused zirconia or fused AZS: which is the best choice? Ceram Eng Sci Proc 20(1):65

    CAS  Google Scholar 

  12. Boussuge M (2007) Recent advances in the study of the thermomechanical properties of fused-cast refractories at macro and micro scales. 10th European ceramic society proc., Berlin, 17–21 June 2007, to be published in J Eur Ceram Soc

  13. https://doi.org/www.amiravis.com

  14. Madi K, Forest S, Boussuge M, Gailliègue S, Lataste E, Buffière JY, Bernard D, Jeulin D (2007) Finite element simulations of the deformation of fused-cast refractories based on X-ray computed tomography. Comput Mater Sci 39:224

    Article  CAS  Google Scholar 

  15. Madi K, Forest S, Cordier P, Boussuge M (2005) Numerical study of creep in two-phase aggregates with a large rheology contrast: implications for the lower mantle. Earth Planet Sci Lett 235:223

    Article  Google Scholar 

  16. Gault C (1989) Ultrasonic non-destructive evaluation of microstructural changes and degradation of ceramics at high temperature. In: Holbrook J, Bussière J (eds) Nondestructive monitoring of materials properties, vol 142. MRS, p 263

  17. Huger M, Fargeot D, Gault C (2002) High temperature measurement of ultrasonic wave velocity in refractory materials. High Temp. High Press 34:193

    Article  CAS  Google Scholar 

  18. Tessier-Doyen N, Glandus JC, Huger M (2006) Untypical Young’s modulus evolution of model refractories at high temperature. J Eur Ceram Soc 26:289

    Article  CAS  Google Scholar 

  19. Yeugo-Fogaing E, Huger M, Gault C (2007) Elastic properties and microstructure: study of two fused cast refractory materials. J Eur Ceram Soc 27(2–3):1843

    Article  CAS  Google Scholar 

  20. Yeugo-Fogaing E, Lorgouilloux Y, Huger M, Gault C (2006) Young’s modulus of zirconia at high temperature. J Mater Sci Lett 41:7663

    Google Scholar 

  21. Bansal GK, Heuer AH (1972) “On a martensitic phase transformation in zirconia (ZrO2)—I. Metallographic evidence. Acta Metall 20(11):1281

    Article  CAS  Google Scholar 

  22. Bansal GK, Heuer AH (1974) “On a martensitic phase transformation in zirconia” (ZrO2)—II. Crystallographic aspects. Acta Metall 22(4):409

    Article  CAS  Google Scholar 

  23. Kelly PM, Rose LRF (2000) The martensitic transformation in ceramics-Its role in transformation toughening. Prog Mater Sci 47:463

    Article  Google Scholar 

  24. Sands CM, Henderson RJ, Chandler HW (2007) A three dimensional computational model of the mechanical response of a dual-phase ceramic. Comput Mater Sci 39:862

    Article  CAS  Google Scholar 

  25. Huger M, Tessier-Doyen N, Chotard T, Gault C (2007) Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories: Investigation by high temperature ultrasounds. Ceramic Forum International, Special issue on “mechanical and thermal behaviour of refractories”, p E93

  26. Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press

  27. Ohtsu M (1999) Estimation of crack and damage progression in concrete by quantitative acoustic emission analysis. Mater Eval 521

  28. Ohtsu M, Watanabe H (2001) Quantitative damage estimation of concrete by acoustic emission. Const Build Mater 15:217

    Article  Google Scholar 

  29. Massard L, Madi K, Boussuge M, Forest S, Yeugo-Fogaing E, Huger M, Gault C (2004) High temperature mechanical behaviour of fused-cast refractories. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 631

  30. Muto H, Sakai M (1998) Grain-boundary sliding and grain interlocking in the creep deformation of two-phase ceramics. J Am Ceram Soc 81(6):1611

    Article  CAS  Google Scholar 

  31. Wilkinson DS (1998) Creep mechanisms in multiphase ceramic materials. J Am Ceram Soc 81(2):275

    Article  CAS  Google Scholar 

  32. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press

  33. Boussuge M (2004) Thermomechanical behaviour: from ceramics to refractories. In: “Advances in refractories for the metallurgical industries IV” proc., 4th Int.Symp, Hamilton, Canada, 22–25 August, p 605

  34. Schmitt N, Hernandez J-F, Lamour V, Berthaud Y, Meunier P, Poirier J (2000) Coupling between kinetics of dehydration, physical and mechanical behaviour for high alumina castable. Cement Concr Res 30:1597

    Article  CAS  Google Scholar 

  35. Marzagui H, Cutard T, Yeugo-Fogaing E, Huger M, Gault C, Prompt N, Deteuf C (2004) Microstructural changes and high temperature mechanical behavior of an andalusite based low cement castable. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 331

  36. Marzagui H, Cutard T (2004) Characterisation of microstructural evolutions in refractory castables by in situ high temperature ESEM. J Mater Process Technol 155–156(11):1474

    Article  Google Scholar 

  37. Nazaret F, Marzagui H, Cutard T (2006) Influence of mechanical behaviour specificities of damaged refractory castables on the Young’s modulus determination. J Eur Ceram Soc 26(8):1429

    Article  CAS  Google Scholar 

  38. Marzagui H, Cutard T, Roosefid M, Ouedraogo E, Prompt N, Deteuf C (2004) Room temperature mechanical behaviour of two refractory castables. Fourth int. symp. on advances in refractories for the metallurgical industries proc., 43rd annual conference of metallurgists, Hamilton, Canada, 22–25 August, p 645

  39. Roosefid M, Ouedraogo E, Marzagui H, Cutard T, Prompt N, Deteuf C (2005) Thermomechanical behaviour of two refractory castables. In: UNITECR ‘05, Proceedings of the 9th unified international technical conference on refractories, Jeffrey D. Smith (ed), Wiley-American Ceramic Society, 8–11 November, Orlando, Florida, USA, p 1003

  40. Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Doctorat Es-Sciences Physiques, Université Paris VI

  41. Mazars J (1986) A description of micro and micro-scale damage of concrete structure. Eng Fract Mech 25:729

    Article  Google Scholar 

  42. Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech, ASCE 115:345

    Article  Google Scholar 

  43. Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33(20–22):3327

    Article  Google Scholar 

Download references

Acknowledgements

The work related in this paper has been mainly performed by PhD students (Edwige Yeugo-Fogaing, Emilie Lataste, Hicham Marzagui, Kamel Madi, Ludovic Massard, Mohsen Roosefid) under the supervision of senior researchers (Anne Piant, Samuel Forest, Christian Gault, Christian Olagnon, Evariste Ouedraogo, Gilbert Fantozzi, Marc Huger, Thierry Cutard): all of them must be greatly acknowledged. The author, coordinator of this project, also wishes to thank the Ministry of Industry (Michel Mussino), Saint-Gobain CREE (Christophe Bert, Isabelle Cabodi, Michel Gaubil, Yves Boussant-Roux), TRB (Nicolas Prompt, Thierry Joly, Cyrille Deteuf) and EDF (Alain Guyonvarch, Patrick Billard, Yves Dutheillet) for their technical and financial support in this programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Boussuge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boussuge, M. Investigation of the thermomechanical properties of industrial refractories: the French programme PROMETHEREF. J Mater Sci 43, 4069–4078 (2008). https://doi.org/10.1007/s10853-008-2534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2534-0

Keywords

Navigation