Skip to main content

Advertisement

Log in

Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supercritical carbonation of Portland cement binders was studied to analyse the influence of the type of cement on carbonation at high CO2 pressures (CO2 at 20 MPa and 318 K) and to improve the understanding of the effects on the microstructure and physicochemical properties of binders. The results were compared with those obtained in a natural exposure. Microstructural properties of supercritically and atmospherically carbonated Portland cement binders were examined using the complementary analytical techniques of FTIR, TG-DTA, and BSEM-EDX. Supercritically carbonated binders showed a microstructure based on a more polymerized and lower Ca form of CSH gel, formed by decalcification of high-Ca form of CSH gel. Results suggested that during the treatment at artificially intensified conditions, the crystallized calcium carbonate came mainly from the carbonation of the CSH gel, and at atmospheric conditions, from the carbonation of the portlandite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Senevirtane AMG, Short NR, Page CL (2003) Compos: Part A 34:1105

    Article  Google Scholar 

  2. Short NR, Bough AR, Seneviratne AMG, Purnell P, Page CL (2004) J Mater Sci 39:5683. doi:https://doi.org/10.1023/B:JMSC.0000040076.42260.cb

    Article  CAS  Google Scholar 

  3. Macias A, Kindness A, Glasser FP (1997) Cem Concr Res 27(2):215

    Article  CAS  Google Scholar 

  4. Alba N, Vázquez E, Gassó S, Baldasano JM (2001) Waste Manage 21:313

    Article  CAS  Google Scholar 

  5. Garrabrants AC, Sánchez F, Kosson DS (2004) Waste Manage 24:19

    Article  CAS  Google Scholar 

  6. Hartmann T, Paviet-Hartmann P, Rubin JB, Fitzsimmons MR, Sickafus KE (1999) Waste Manage 19:355

    Article  CAS  Google Scholar 

  7. Van Ginneken L, Dutré V, Adriansens W, Weyten H (2004) J Supercrit Fluids 30:175

    Article  Google Scholar 

  8. Fernández Bertos M, Simons SJR, Hills CD, Carey PJ (2004) J Hazard Mater B112:193

    Article  Google Scholar 

  9. Al-Kadhimi TKH, Banfill PFG, Millard SG, Bungey JH (1996) Adv Cem Res 8(30):47

    Article  CAS  Google Scholar 

  10. Soroushian P, Aouadi F, Chowdhury H, Nossoni A, Sarwar G (2004) Cem Concr Compos 26:797

    Article  CAS  Google Scholar 

  11. Bary B, Sellier A (2004) Cem Concr Res 34:1859

    Article  CAS  Google Scholar 

  12. Jones Jr (1996) US patent 005518540A

  13. Van Gerven T, Van Baelen D, Dutre V, Vandecasteele C (2004) Cem Concr Res 34:149

    Article  Google Scholar 

  14. Short NR, Purnell P, Page CL (2001). J Mater Sci 36:35. doi:https://doi.org/10.1023/A:1004870204162

    Article  CAS  Google Scholar 

  15. Ngala VT, Page CL (1997) Cem Concr Res 27(7):995

    Article  CAS  Google Scholar 

  16. Johannesson B, Utgenannt P (2001) Cem Concr Res 31:925

    Article  CAS  Google Scholar 

  17. Arandigoyen M, Bicer-Simsir B, Alvarez JI, Lange DA (2006) Appl Surf Sci 252:7562

    Article  CAS  Google Scholar 

  18. García-González CA, Hidalgo A, Andrade C, Alonso MC, Fraile J, López-Periago AM, Domingo C (2006) Ind Eng Chem Res 45:4985

    Article  Google Scholar 

  19. García-González CA, Hidalgo A, Fraile J, López-Periago AM, Andrade C, Domingo C (2007) Ind Eng Chem Res 46:2488

    Article  Google Scholar 

  20. Goñi S, Gaztañaga MT, Guerrero A (2002) J Mater Res 17(7):1834

    Article  Google Scholar 

  21. Xu P, Kirckpatrick RJ, Poe B, McMillan PF, Cong X (1999) J Am Ceram Soc 82(3):742

    Google Scholar 

  22. Grutzeck MW (1999) Mater Res Innov 3:160

    Article  CAS  Google Scholar 

  23. Farcas F, Touzé Ph (2001) Bull lab Ponts Chaussées 230:77

    CAS  Google Scholar 

  24. Lee WKW, van Deventer JSJ (2002) Colloids Surf A: Physicochem Eng Asp 211:49

    Article  CAS  Google Scholar 

  25. Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society, London

  26. Hidalgo A, Petit S, Domingo C, Alonso C, Andrade C (2007) Cem Concr Res 37:63

    Article  CAS  Google Scholar 

  27. Sitarz M, Mozgawa W, Handke M (1999) J Mol Struct 511–512:281

    Article  Google Scholar 

  28. Mozgawa W (2001) J Mol Struct 596:129

    Article  CAS  Google Scholar 

  29. Mozgawa W, Sitarz M (2002) J Mol Struct 614:273

    Article  CAS  Google Scholar 

  30. Vagenas NV, Gatsouli A, Kontoyannis CG (2003) Talanta 59:831

    Article  CAS  Google Scholar 

  31. Klimesch DS, Ray A (1999) J Therm Anal Calorim 56:27

    Article  CAS  Google Scholar 

  32. Kalousek GL (1957) J Am Ceram Soc 40(3):74

    Article  CAS  Google Scholar 

  33. Stepkowska ET (2006) J Therm Anal Calorim 84(1):175

    Article  CAS  Google Scholar 

  34. Tai CY, Chen W-R, Shih S-M (2006) AIChE J 52(4):292

    Article  CAS  Google Scholar 

  35. O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Miner Metall Proc 19(2):95

    Google Scholar 

  36. Ray A (2002) Pure Appl Chem 74(11):2131

    Article  CAS  Google Scholar 

  37. Daimon M (1971) J Am Ceram Soc 54:423

    Article  CAS  Google Scholar 

  38. Groves GW, Rodway DI, Richardson IG (1990) Adv Cem Res 3(11):117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Comunidad de Madrid Project GR/AMB/0451/2004, Région Poitou-Charentes (Convention 06/RPC-R-84) and EU Project STRP SurfaceT NMP2-CT-2005-013524 is greatly acknowledged. Carlos A. García-González acknowledges CSIC for its funding support through a I3P fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Hidalgo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo, A., Domingo, C., Garcia, C. et al. Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation. J Mater Sci 43, 3101–3111 (2008). https://doi.org/10.1007/s10853-008-2521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2521-5

Keywords

Navigation