Skip to main content
Log in

Structural and chemical properties of nanocrystalline La0.5Sr0.5CoO3−δ layers on yttria-stabilized zirconia analyzed by transmission electron microscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nanocrystalline La1−xSrxCoO3−δ (LSC) thin films with a nominal Sr content x = 0.5 were deposited on 3.5 mol% yttria-stabilized zirconia (YSZ) substrates by a low-temperature sol–gel process followed by a rapid thermal annealing procedure at temperatures up to 900 °C. The structural and chemical stability of the as-prepared nanocrystalline LSC and demixing effects within the thin film or at the LSC/YSZ interface were studied after long-time exposure at temperatures between 700 °C and 1,000 °C. The grain size and surface topography were analyzed by scanning electron microscopy. Transmission electron microscopy combined with selected-area electron diffraction, energy-dispersive X-ray spectrometry, and electron-spectroscopic imaging was applied for the investigation of the microstructure and the analysis of the local chemical composition and element distribution on the nanoscale. Chemical potential calculations, which were performed to assess the decomposition of LSC/YSZ as a function of temperature, show good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Petrov AN, Kononchuk OF, Andreev AV et al (1995) Solid State Ionics 80:189

    Article  CAS  Google Scholar 

  2. Ralph JM, Schoeler AC, Kumpelt M (2001) J Mater Sci 36:1161

    Article  CAS  Google Scholar 

  3. Ivers-Tiffée E, Weber A, Herbstritt D (2001) J Eur Ceram Soc 21:1805

    Article  Google Scholar 

  4. Tuller HL (2000) Solid State Ionics 131:143

    Article  CAS  Google Scholar 

  5. Chen X, Wu NJ, Ritums DJ et al (1999) Thin Solid Films 342:61

    Article  CAS  Google Scholar 

  6. Baumann FS, Fleig J, Konuma M et al (2005) J Electrochem Soc 152:2074

    Article  Google Scholar 

  7. Baumann FS, Fleig J, Habermeier H-U et al (2006) Solid State Ionics 177:1071

    Article  CAS  Google Scholar 

  8. Koep E, Jin C, Haluska M et al (2006) J Power Sources 161:250

    Article  CAS  Google Scholar 

  9. Imanishi N, Sumiya Y, Yoshimura K et al Solid State Ionics 177:2165

  10. Sase M, Ueno D, Yashiro K et al (2005) J Phys Chem Solids 66:343

    Article  CAS  Google Scholar 

  11. Klenov DO, Donner W, Chen L et al (2003) J Mater Res 18:188

    Article  CAS  Google Scholar 

  12. Bieberle-Hütter A, Tuller HL (2006) J Electroceram 16:151

    Article  Google Scholar 

  13. Beckel D, Dubach A, Studart AR et al (2006) J Electroceram 16:221

    Article  CAS  Google Scholar 

  14. Kim BJ, Lee J, Yoo JB (1999) Thin Solid Films 341:13

    Article  CAS  Google Scholar 

  15. Pagnaer J, Hardy A, Mondelaers D et al (2005) Mater Sci Eng B 118:79

    Article  Google Scholar 

  16. Zergioti I, de Laat AWM, Guntow U et al (1999) Appl Phys A 69:433

    Article  Google Scholar 

  17. Kweon HJ, Kuk S-T, Park H-B et al (1996) J Mater Sci Lett 15:428

    CAS  Google Scholar 

  18. Hwang HJ, Moon J, Awano M et al (2000) J Am Ceram Soc 83:2852

    Article  CAS  Google Scholar 

  19. De Souza RA, Kilner JA (1998) Solid State Ionics 106:175

    Article  Google Scholar 

  20. Chen CC, Nasrallah MM, Anderson HU (1993) In: Proceedings of the 3rd International Symposium on SOFC, The Electrochemical Society, Pennington, NJ

  21. Yamamoto O, Takeda Y, Kanno R et al (1987) Solid State Ionics 22:241

    Article  CAS  Google Scholar 

  22. Ivers-Tiffée E, Schießl M, Oel HJ et al (1993) In: Singhal SC, Iwahara H (eds) Solid oxide fuel cells III, The electrochemical society proceedings series, Pennington, NJ

  23. Yokokawa H, Sakai N, Kawada T et al (1991) J Electrochem Soc 138:2719

    Article  CAS  Google Scholar 

  24. Tu HY, Takeda Y, Imanishi N et al (1999) Solid State Ionics 117:277

    Article  CAS  Google Scholar 

  25. Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719

    Article  CAS  Google Scholar 

  26. Beckel D, Bieberle-Hütter A, Harvey A et al (2007) J Power Sources 173:325

    Article  CAS  Google Scholar 

  27. Klenov DO, Donner W, Foran B et al (2003) Appl Phys Lett 82:3427

    Article  CAS  Google Scholar 

  28. Stemmer S, Jacobson AJ, Chen X et al (2001) J Appl Phys 90:3319

    Article  CAS  Google Scholar 

  29. Wang ZL, Zhang J (1995) Philos Mag A 72:1513

    Article  CAS  Google Scholar 

  30. Wang ZL, Zhang J (1996) Phys Rev B 54:1153

    Article  CAS  Google Scholar 

  31. Wang ZL, Yin JS (1998) Philos Mag B 77:49

    Article  CAS  Google Scholar 

  32. Reimer L (1993) Transmission electron microscopy. Physics of image formation and microanalysis (series in optical sciences), Springer-Verlag Berlin and Heidelberg GmbH & Co. K

  33. Li J, Malis T, Dione S (2006) Mater Charact 57:64

    Article  CAS  Google Scholar 

  34. Haggerty RP, Seshadri R (2004) J Phys Condens Matter 16:6477

    Article  CAS  Google Scholar 

  35. Mineshige A, Inaba M, Yao T et al (1996) J Solid State Chem 121:423

    Article  CAS  Google Scholar 

  36. Stadelmann P (2003) Microsc Microanal 9:60

    Google Scholar 

  37. Smith WL, Hobson AD (1973) Acta Crystallogr B 29:362

    Article  CAS  Google Scholar 

  38. Taylor D (1984) Trans J Br Ceram Soc 83:5

    Google Scholar 

  39. MALT for Windows, see https://doi.org/www.kagaku.com/malt/index.html

  40. Yokokawa H, Sakai N, Kawada T et al (1992) Solid State Ionics 52:43

    Article  CAS  Google Scholar 

  41. Wagman DD, Evans WH, Parker VB et al (1982) J Phys Chem Ref Data 11(2):392

    Google Scholar 

  42. Yokokawa H, Sakai N, Kawada T et al (1991) J Electrochem Soc 139(9):2719 and references quoted therein

    Article  Google Scholar 

  43. Yokokawa H, Sakai N, Kawada T et al (1989) Denki Kagaku 57:821

    CAS  Google Scholar 

  44. Yokokawa H, Sakai N, Kawada T et al (1989) Denki Kagaku 57:829

    CAS  Google Scholar 

  45. Yokokawa H, Sakai N, Kawada T et al (1990) Denki Kagaku 58:161

    Google Scholar 

  46. Yokokawa H, Sakai N, Kawada T et al (1990) Denki Kagaku 58:489

    CAS  Google Scholar 

  47. Vashook VV, Zinkevich MV, Ullmann H et al (1997) Solid State Ionics 99:23

    Article  CAS  Google Scholar 

  48. Cherepanov VA, Gavrilova LY, Barkhatova LY et al (1998) Ionics 4:309

    Article  CAS  Google Scholar 

  49. Rao CNR, Gopalakrishnan J, Vidyasagar K (1984) Indian J Chem A 23:265

    Google Scholar 

  50. Hadermann J, Van Tendeloo G, Abakumov AM (2005) Acta Crystallogr A 61:77

    Article  Google Scholar 

  51. Wang YG, Steinsvik S, Høier R et al (1995) J Mater Sci Lett 14:1027

    Article  CAS  Google Scholar 

  52. Burriel M, Garcia G, Santiso J et al (2005) Thin Solid Films 473:98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been performed within the project D5 of the DFG Research Center for Functional Nanostructures (CFN) and within a joint DFG-NSF project. It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14–300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dieterle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieterle, L., Bach, D., Schneider, R. et al. Structural and chemical properties of nanocrystalline La0.5Sr0.5CoO3−δ layers on yttria-stabilized zirconia analyzed by transmission electron microscopy. J Mater Sci 43, 3135–3143 (2008). https://doi.org/10.1007/s10853-008-2502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2502-8

Keywords

Navigation