Journal of Materials Science

, Volume 43, Issue 6, pp 1966–1973 | Cite as

Combining MoS2 or MoSe2 nanoflakes with carbon by reacting Mo(CO)6 with S or Se under their autogenic pressure at elevated temperature

  • Vilas G. Pol
  • Swati V. Pol
  • Pani P. George
  • Aharon Gedanken


This paper describes a non-aqueous, solvent-free, environmentally friendly, one-pot facile reaction to synthesize inorganic materials inclusion with carbon (MoS2 or MoSe2/C) at low temperatures. Nanoflakes of MoS2 and MoSe2 inclusion with carbon are prepared by a thermal (750 °C) reaction between Mo(CO)6 and S or Se at their autogenic pressure in a closed reactor under inert atmosphere. Elemental sulfur or selenium powders are chosen in order to avoid the use of highly toxic H2S and H2Se gases. Without further processing of the as-prepared MoS2/C or MoSe2/C products, their compositional, morphological and structural characterization are carried out. The possibility of hydrogen storage in as-synthesized MoS2/C or MoSe2/C products is examined. A probable reaction mechanism for the formation of MoS2 or MoSe2 nanoflakes inclusion with C is discussed.


MoS2 Transmission Electron Micrograph Powder Diffraction File TiS2 Molybdenum Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A.G. thanks the Ministry of Science for financial support for this research via an Infrastructure Grant.


  1. 1.
    Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulfide. Nature 360:444CrossRefGoogle Scholar
  2. 2.
    Amaratunga GAJ, Chhowalla M, Kiely CJ, Alexandrou I, Aharonow R, Devenish RM (1996) Hard elastic carbon thin films from linking of carbon nanoparticles. Nature 383:321CrossRefGoogle Scholar
  3. 3.
    Nath M, Rao CNR (2002) Nanotubes of group 4 metal disulfides. Angew Chem Int Ed 41:3451CrossRefGoogle Scholar
  4. 4.
    Nath M, Rao CNR (2001) New metal disulfide nanotubes. J Am Chem Soc 123:4841CrossRefGoogle Scholar
  5. 5.
    Chianelli RR (1984) Fundamental-studies of transition-metal sulfide hydrodesulfurization catalysts. Catal Rev Sci Eng 26:361CrossRefGoogle Scholar
  6. 6.
    Lince JR, Fleischauer PD (1999) A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants. Tribol Int 32:627CrossRefGoogle Scholar
  7. 7.
    Tenne R (1995) Doped and heteroatom-containing fullerene-like structures and nanotubes. Adv Mater 7:965CrossRefGoogle Scholar
  8. 8.
    Feldman Y, Wassermann E, Srolovitz DJ, Tenne R (1995) High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267:222CrossRefGoogle Scholar
  9. 9.
    Feldman Y, Frey GL, Homyonfer M, Lyakhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J Am Chem Soc 118:5362CrossRefGoogle Scholar
  10. 10.
    Homyonfer M, Mastai Y, Hershfinkel M, Volterra V, Hutchison JL, Tenne R (1996) Scanning tunneling microscope induced crystallization of fullerene-like MoS2. J Am Chem Soc 118:7804CrossRefGoogle Scholar
  11. 11.
    Duphil D, Bastide S, Levy-clement C (2002) Chemical synthesis of molybdenum disulfide nanoparticles in an organic solution. J Mat Chem 12:2430CrossRefGoogle Scholar
  12. 12.
    Loginova TP, Kabachii YA, Sidorov SN, Zhirov DN, Valetsky PM, Ezernitskaya MG, Dybrovina LV, Bragina TP, Lependina OL, Stein B, Bronstein LM (2004) Molybdenum sulfide nanoparticles in block copolymer micelles: synthesis and tribological properties. Chem Mater 16:2369CrossRefGoogle Scholar
  13. 13.
    Sen R, Govindaraj A, Suenaga K, Suzuki S, Kataura H, Iijima S, Achiba Y (2001) Encapsulated and hollow closed-cage structures of WS2 and MoS2 prepared by laser ablation at 450–1050 °C. Chem Phys Lett 340:242CrossRefGoogle Scholar
  14. 14.
    Margulis L, Salitra G, Tenne R, Talianker M (1993) Nested fullerene-like structures. Nature 365:113CrossRefGoogle Scholar
  15. 15.
    Vollath D, Szabo DV (1998) Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater Lett 35:236CrossRefGoogle Scholar
  16. 16.
    Wiley JB, Kaner RB (1992) Rapid solid-state precursor synthesis of materials. Science 255:1093CrossRefGoogle Scholar
  17. 17.
    Zhan JH, Zhang ZD, Qian XF, Wang C, Xie Y, Qian YT (1999) Synthesis of MoSe2 nanocrystallites by a solvothermal conversion from MoO3. Mater Res Bull 34:497CrossRefGoogle Scholar
  18. 18.
    Huang DF, Kelley DF (2000) Synthesis and characterization of MoSe2 and WSe2 nanoclusters. Chem Mater 12:2825CrossRefGoogle Scholar
  19. 19.
    Nath M, Rao CNR (2001) MoSe2 and WSe2 nanotubes and related structures. Chem Commun 2236–2237Google Scholar
  20. 20.
    Hu J, Li H, Huang X (2005) Influence of micropore structure on Li-storage capacity in hard carbon spherules. Solid State Ionics 176:1151CrossRefGoogle Scholar
  21. 21.
    Laosiripojana N, Assabumrungrat S (2005) Applied, methane steam reforming over Ni/Ce-ZrO2 catalyst: influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Catal A Gen 290:200CrossRefGoogle Scholar
  22. 22.
    Moitei M, Calderon-Moreno J, Gedanken A (2002) Forming multiwalled carbon nanotubes by the thermal decomposition of Mo(CO)6. Chem Phys Lett 357:267Google Scholar
  23. 23.
    Bailer JC, Emeleus HJ, Nyholm SR (1973) In: Trotman-Dickensor AF (ed) Comprehensive inorganic chemistry, 3rd edn. Pergamon Press, New YorkGoogle Scholar
  24. 24.
    Pol SV, Pol VG, Gedanken A (2004) Reactions under autogenic pressure at elevated temperature produces core shell structures of metals/metal oxides with carbon from various alkoxides. Chem Eur J 10:4467CrossRefGoogle Scholar
  25. 25.
    Pol SV, Pol VG, Kessler VG, Seisenbaeva GA, Sung MG, Asai S, Gedanken A (2004) The effect of a magnetic field on a RAPET (Reaction under Autogenic Pressure at Elevated Temperature) of MoO(OMe)4: fabrication of MoO2 nanoparticles coated with carbon or separated MoO2 and carbon particles. J Phys Chem B 108:6322CrossRefGoogle Scholar
  26. 26.
    Pol VG, Pol SV, Perkas N, Gedanken A (2007) WS2 breeds with carbon to create worm-like nanostructure and assembly: reaction of W(CO)6 with S under autogenic pressure at elevated temperature in an inert atmosphere. J Phys Chem C 111:134CrossRefGoogle Scholar
  27. 27.
    Pol VG, Pol SV, Gedanken A, Lim SH, Zhong Z, Lin JJ (2006) Thermal decomposition of commercial silicone oil to produce high yield high surface area SiC nanorods. Phys Chem B 110:11237CrossRefGoogle Scholar
  28. 28.
    Chen J, Suo-Long Li, Zhan-Liang Tao, Yu-Tian Shen, Chun-Xiang Cui (2003) Titanium disulfide nanotubes as hydrogen-storage materials. J Am Chem Soc 125:5284CrossRefGoogle Scholar
  29. 29.
    Pol SV, Pol VG, Gedanken A (2006) Testing of carbon-coated VOx prepared via RAPET as Li insertion materials. Adv Mater 18:2023CrossRefGoogle Scholar
  30. 30.
    Pol SV, Pol VG, Gedanken A (2006) Synthesis of WC nanotubes. Adv Mater 18:2023CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vilas G. Pol
    • 1
  • Swati V. Pol
    • 1
  • Pani P. George
    • 1
  • Aharon Gedanken
    • 1
  1. 1.Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials & NanotechnologyBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations