Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4370–4382 | Cite as

Energy dissipation in carbon nanotube composites: a review

  • Jonghwan Suhr
  • Nikhil A. Koratkar
Commonality of Phenomena in Composite Materials

Abstract

In this article we discuss the energy dissipation that occurs when the interfacial slip of nanoscale fillers is activated in a host matrix material. We consider both polymer (such as polycarbonate, PEO, PEG) and epoxy matrices. The nanoscale fillers considered are carbon nanotubes (both singlewalled and multiwalled) as well as fullerenes. The nano-composites are fabricated by using a solution mixing technique with tetra-hydro-furan as the solvent. The interfacial friction damping is quantified by performing uniaxial dynamic load tests and measuring the material storage and loss modulus. We study various effects such as impact of nanotube weight fraction, nanotube surface treatment (oxidation, epoxidation etc.), test frequency, strain amplitude, operating temperature, as well as effect of pre-strain or biased strain. The effect of geometry (i.e., aspect ratio) is also considered by comparing the damping response of fullerene-composites with that of nanotube-composites.

Keywords

Storage Modulus Strain Amplitude Loss Modulus Interfacial Shear Stress Polymer Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge funding support for this research from the US National Science Foundation (CMS-0347604) and the US Army Research Office (DAAD19–03-1-0036). We also thank our research collaborators at RPI: Professors Linda Schadler, Ravi Kane and Pulickel Ajayan.

References

  1. 1.
    Kosamata JB, Liguore SL (1993) J Aerospace Eng 6:268CrossRefGoogle Scholar
  2. 2.
    Shadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73:3842CrossRefGoogle Scholar
  3. 3.
    Ajayan PM, Shadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750CrossRefGoogle Scholar
  4. 4.
    Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188CrossRefGoogle Scholar
  5. 5.
    Thostenson ET, Chou T-W (2002) J Phys D: Appl Phys 35:L77CrossRefGoogle Scholar
  6. 6.
    Fisher FT, Bradshaw RD, Brinson LC (2002) Appl Phys Lett 80:4647CrossRefGoogle Scholar
  7. 7.
    Qian D, Dickey EC, Andrew R, Rantell T (2000) Appl Phys Lett 76:2868CrossRefGoogle Scholar
  8. 8.
    Thostenson ET, Zhifeng R, Chou T-W (2001) Compos Sci Technol 61:1899CrossRefGoogle Scholar
  9. 9.
    Li F, Cheng HM, Bai S, Su G, Dresselhaus MS (2000) Appl Phys Lett 77:3161CrossRefGoogle Scholar
  10. 10.
    Zhang W, Suhr J, Koratkar N (2006) Adv Mater 18:452CrossRefGoogle Scholar
  11. 11.
    Suhr J, Koratkar N, Keblinski P, Ajayan PM (2005) Nat Mater 4:134CrossRefGoogle Scholar
  12. 12.
    Koratkar N, Suhr J, Joshi A, Kane R, Schadler L, Ajayan P, Bartolucci S (2005) Appl Phys Lett 87:06312CrossRefGoogle Scholar
  13. 13.
    Suhr J, Koratkar N (2006) J Nanosci Nanotechnol 6:483CrossRefGoogle Scholar
  14. 14.
    Suhr J, Zhang W, Ajayan P, Koratkar N (2006) Nano Lett 6:219CrossRefGoogle Scholar
  15. 15.
    Zhou X, Wang KW, Bakis CE (2003) Comps Sci Technol 64:2425CrossRefGoogle Scholar
  16. 16.
    Rajoria H, Jalili N (2005) Compos Sci Technol 645:2079CrossRefGoogle Scholar
  17. 17.
    Liu A, Huang J, Wang K-W, Bakis CE (2006) J Intell Mater Syst Struct 17:217CrossRefGoogle Scholar
  18. 18.
    Painter P, Coleman M (1997) Fundamentals of polymer science. CRC Press, New YorkGoogle Scholar
  19. 19.
    Christensen RM (1982) Theory of viscoelasticity. Academic Press, NYGoogle Scholar
  20. 20.
    Barber A, Cohen S, Wagner HD (2003) Appl Phys Lett 82:4140CrossRefGoogle Scholar
  21. 21.
    Yu MF, Yakobson BI, Ruoff RS (2000) J Phys Chem B 104:8764CrossRefGoogle Scholar
  22. 22.
    Cumings J, Zettl A (2000) Science 289:602CrossRefGoogle Scholar
  23. 23.
    Bower C, Kleinhammes A, Wu Y, Zhou O (1998) Chem Phys Lett 288:481CrossRefGoogle Scholar
  24. 24.
    Monthioux M, Smith B, Burteaux B, Claye A, Fischer J, Luzzi DE (2001) Carbon 39:1251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of NevadaRenoUSA
  2. 2.Department of MechanicalAerospace and Nuclear Engineering, Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations