Skip to main content
Log in

The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Self-organized and highly ordered titania nanotube arrays (TNAs) were prepared through electrochemical anodic oxidization on a titanium foil in 0.5 wt.% hydrofluoric acid (HF) electrolyte. The current density and morphology images during the formation process of TNAs were studied. Results show that the formation of TNAs includes the following processes. Initially, dense oxide of titania was rapidly formed on the titanium surface, followed by small pore formation. The adjacent small pores were then integrated and become larger pores. At the same time, small tubes were transformed. These small tubes were further integrated into larger tubes until the primary tube formation. Finally, the tubular structure was gradually optimized and eventually developed into the highly ordered TNAs. A model was proposed to explain the formation mechanism of TNAs fabricated on a titanium foil in HF acid electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Nano Lett 2:717

    Article  CAS  Google Scholar 

  2. Limmer SJ, Chou TP, Cao GZ (2004) J Mater Sci 39:895

    Article  CAS  Google Scholar 

  3. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  4. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331

    Article  CAS  Google Scholar 

  5. Maggie P, Karthik S, Sorachon Y, Haripriya EP, Oomman KV, Mor GK, Thomas AL, Adriana F, Grimes CA (2006) J Phys Chem B 110:16179

    Article  Google Scholar 

  6. Mor GK, Oomman KV, Maggie P, Karthik S, Grimes CA (2006) Sol Energ Mater Sol C 90:2011

    Article  CAS  Google Scholar 

  7. Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmuki P (2006) Electrochem Commun 8:544

    Article  CAS  Google Scholar 

  8. Chuanmin R, Maggie P, Oomman KV, Grimes CA (2005) Sol Energ Mater Sol C 90:1283

    Google Scholar 

  9. Karthik S, Kong CT, Mor GK, Grimes CA (2006) J Phys D: Appl Phys 39:2361

    Article  Google Scholar 

  10. Xie YB (2005) Electrochim Acta 51:3399

    Article  Google Scholar 

  11. Lai YK, Sun L, Chen YC, Zhuang HF, Lin CJ, Chin JW (2006) J Electrochem Soc 153:123

    Article  Google Scholar 

  12. Quan X, Yang SG, Ruan XL, Zhao HM (2005) Environ Sci Technol 39:3770

    Article  CAS  Google Scholar 

  13. Xie Y (2006) Nanotechnology 17:3340

    Article  CAS  Google Scholar 

  14. Mor GK, Oomman KV, Maggie P, Grimes CA (2003) Sensor Lett 1:42

    Article  CAS  Google Scholar 

  15. Oomman KV, Maggie P, Karthik S, Mor GK, Grimes CA (2005) J Nanosci Nanotechnol 5:1158

    Article  Google Scholar 

  16. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215

    Article  CAS  Google Scholar 

  17. Jong HP, Kim SW, Bard AJ (2006) Nano Lett 6:24

    Article  Google Scholar 

  18. Macak JM, Hiroaki T, Andrej G, Schmuki P (2005) Electrochem Commun 7:1133

    Article  CAS  Google Scholar 

  19. Maggie P, Karthik S, Oomman KV, Mor GK, Grimes CA (2006) J Phys D: Appl Phys 39:2498

    Article  Google Scholar 

  20. Wang H, Yip CT, Cheung KY, Djurisic AB, Xie MH, Leung YH, Chan WK (2006) Appl Phys Lett 89

  21. Andrei G, Macak JM, Hiroaki T, Julia K, Volker H, Lothar F, Schmuki P (2006) Nano Lett 6:1080

    Article  Google Scholar 

  22. Andrei G, Macak JM, Hiroaki T, Julia K, Volker H, Sebastian K, Schmuki P (2006) Chem Phys Lett 419:426

    Article  Google Scholar 

  23. Zhao JL, Wang XH, Sun TY, Li LT (2005) Nanotechnology 16:2450

    Article  CAS  Google Scholar 

  24. Wang M, Guo DJ, Li HL (2005) J Solid Stage Chem 178:1996

    Article  CAS  Google Scholar 

  25. Mor GK, Oomman KV, Maggie P, Niloy M, Grimes CA (2003) J Mater Res 18:2588

    Article  CAS  Google Scholar 

  26. Macak JM, Hiroaki T, Schmuki P (2005) Angew Chem Int Ed 44:2100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 20677039), Science and Technology Commission of Shanghai Municipality (No. 05nm05004) and the Program of New Century Excellent Talents in University (No. NCET-04-0406). Thanks for support of FE-SEM lab in Instrumental Analysis Center of SJTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxue Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Zhou, B., Li, L. et al. The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J Mater Sci 43, 1880–1884 (2008). https://doi.org/10.1007/s10853-007-2418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2418-8

Keywords

Navigation