Skip to main content
Log in

Solid-particle erosion behavior of high-performance thermoplastic polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid-particle erosion tests were carried out to study the effect of matrix material, impact angle, and impact velocity on the erosion behavior of seven types of thermoplastic neat polymers (i.e., polyetherimide, polyetheretherketone, polyetherketone, polyphenylene sulfide, polyethersulfone, polysulfone, and ultrahigh molecular weight polyethylene). Steady-state erosion rates of these polymers have been evaluated at different impact angles (15–90°) and impact velocities (25–66 m/s). Silica sand of particle size 200 ± 50 μm was used as the erodent. These polymers have exhibited maximum erosion rate (E max) at 30° impact angle indicating ductile erosion behavior. Some of these polymers have shown an incubation behavior at lower impact velocities for an impact angle of 90°. Correlations among steady-state erosion rate and mechanical properties and glass transition temperature (T g) were established. Morphology of eroded surfaces was examined using scanning electron microscopy and possible wear mechanisms were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PEI, PEEK, PEK, and PPS were cleaned with acetone, whereas PES, PSU, and UHMWPE were cleaned with cotton because these polymers react with acetone.

Abbreviations

ABS :

Acrylonitryl-butyldiene styrene

PA:

Polyamide

PB :

Polybutadine

PC:

Polycarbonate

PE:

Polyethylene

PEI:

Polyetherimide

PEEK:

Polyetheretherketone

PEK:

Polyetherketone

PES:

Polyethersulfone

PMMA:

Polymetyl methacrylate

PP:

Polypropylene

PPS:

Polyphenylene sulfide

PS:

Polystyrene

PSU:

Polysulfone

PTFE:

Polytetrafluoroethylene

TPI:

Thermoplastic polyimide

UHMWPE:

Ultrahigh molecular weight polyethylene

References

  1. Johnston NJ, Towell TW, Hergenrother PM (1991) Thermoplastic composite materials. Elsevier Science Publishers, BV, p 27

  2. Barkoula N-M, Karger-Kocsis J (2002) J Mater Sci 37:3807

    Article  CAS  Google Scholar 

  3. Hutchings IM (2002) Tribology: friction and wear of engineering materials. Butterworth-Heinemann, Oxford, p 174

    Google Scholar 

  4. Arjula S, Harsha AP (2006) Polym Test 26:188

    Article  Google Scholar 

  5. Tilly GP (1969) Wear 14:63

    Article  Google Scholar 

  6. Smeltzer CE, Gulden ME, Campton WA (1970) J Basic Eng 92:639

    Article  Google Scholar 

  7. Ratner SB, Styller EE (1981) Wear 73:213

    Article  CAS  Google Scholar 

  8. Rajesh JJ, Bijwe J, Tewari US, Venkataraman B (2001) Wear 249:702

    Article  CAS  Google Scholar 

  9. Barkoula NM, Gremmels J, Karger-Kocsis J (2001) Wear 247:100

    Article  CAS  Google Scholar 

  10. Thai CM, Tsuda K, Hojo H (1981) J Test Eval 9:359

    Article  CAS  Google Scholar 

  11. Walley SM, Field JE Yennadhiou P (1984) Wear 100:263

    Article  CAS  Google Scholar 

  12. Friedrich K (1986) J Mater Sci 21:3317

    Article  CAS  Google Scholar 

  13. Walley SM, Field JE (1987) Phil Trans R Soc Lond A 321:277

    Article  Google Scholar 

  14. Walley SM, Field JE, Scullion IM, Heukensfeldt Jansen FPM, Bell D (1984) In: Field JE, Dear JP (eds) Proceedings of seventh international conference on erosion by liquid and solid impact. Cavendish Laboratory, Cambridge, UK, p 58

    Google Scholar 

  15. Walley SM, Field JE, Greengrass M (1987) Wear 114:59

    Article  Google Scholar 

  16. Wang YQ, Huang LP, Liu WL, Li J (1998) Wear 218:128

    Article  CAS  Google Scholar 

  17. Rao PV, Buckley DH (1984) ASLE Trans 27:373

    Article  Google Scholar 

  18. Rao PV, Buckley DH (1986) ASLE Trans 29:283

    Article  CAS  Google Scholar 

  19. Böhm H, Betz S, Ball A (1990) Tribol Int 23:399

    Article  Google Scholar 

  20. Brandstädter A, Goretta KC, Routbort JL, Groppi DP, Karasek KR (1991) Wear 147:155

    Article  Google Scholar 

  21. Kayser W (1967) In: Fyall AA, King RB (eds) Proceedings of 2nd Meersburg conference on rain erosion and allied phenomena. Royal Aircraft Establishment, Farnborough, UK, p 427

    Google Scholar 

  22. Marei AI, Izvozchikov PV (1967) Abrasion of rubber. MacLaren, London, p 274

    Google Scholar 

  23. Hutchings IM, Deuchar DWT, Muhr AH (1987) J Mater Sci 22:4071

    Article  CAS  Google Scholar 

  24. Arnold JC, Hutchings IM (1989) J Mater Sci 24:833

    Article  CAS  Google Scholar 

  25. Li J, Hutchings IM (1990) Wear 135:293

    Article  CAS  Google Scholar 

  26. Besztercey G, Karger-Kocsis J, Szaplonczay P (1999) Polym Bull 42:717

    Article  CAS  Google Scholar 

  27. Tilly GP, Sage W (1970) Wear 16:447

    Article  Google Scholar 

  28. Williams JH Jr, Lau EK (1974) Wear 29:219

    Article  CAS  Google Scholar 

  29. Häger A, Friedrich K, Dzenis YA, Paipetis SA (1995) In: Street K, Whistler BC (eds) Proceedings of ICCM-10, Canada 1995. Woodhead Publishing Ltd, Cambridge, p 155

    Google Scholar 

  30. Miyazaki N, Takeda N (1993) J Compos Mater 27:21

    Article  CAS  Google Scholar 

  31. Miyazaki N, Hamao T (1994) J Compos Mater 28:871

    Article  CAS  Google Scholar 

  32. Harsha AP, Tewari US, Venkataraman B (2003) Wear 254:693

    Article  CAS  Google Scholar 

  33. Harsha AP, Thakre AA (2007) Wear 262:807

    Article  CAS  Google Scholar 

  34. Pool KV, Dharan CKH, Finnie I (1986) Wear 107:1

    Article  CAS  Google Scholar 

  35. Zahavi J, Schimitt GF Jr (1981) Wear 71:179

    Article  Google Scholar 

  36. Mathias PJ, Wu W, Goretta KC, Routbort JL, Groppi DP, Karasek KR (1989) Wear 135:161

    Article  CAS  Google Scholar 

  37. Roy M, Vishwanathan B, Sundararajan G (1994) Wear 171:149

    Article  CAS  Google Scholar 

  38. Miyazaki N, Funakura S (1998) J Compos Mater 32:1295

    Article  Google Scholar 

  39. Barkoula N-M, Karger-Kocsis J (2002) Wear 252:80

    Article  CAS  Google Scholar 

  40. Tewari US, Harsha AP, Häger AM, Friedrich K (2002) Wear 252:992

    Article  CAS  Google Scholar 

  41. Tewari US, Harsha AP, Häger AM, Friedrich K (2003) Compos Sci Technol 63:549

    Article  CAS  Google Scholar 

  42. Moss E, Karger-Kocsis J (1999) Adv Compos Lett 8:59

    Google Scholar 

  43. Rattan R, Bijwe J (2006) Wear 262:568

    Article  Google Scholar 

  44. Bull SJ (1997) Mater Sci Forum 246:105

    Article  CAS  Google Scholar 

  45. Ruff AW, Ives LK (1975) Wear 35:195

    Article  Google Scholar 

  46. Lamy B (1984) Tribol Int 17:35

    Article  Google Scholar 

  47. Wiederhorn SM, Hockey BJ (1983) J Mater Sci 18:766

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Harsha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arjula, S., Harsha, A.P. & Ghosh, M.K. Solid-particle erosion behavior of high-performance thermoplastic polymers. J Mater Sci 43, 1757–1768 (2008). https://doi.org/10.1007/s10853-007-2405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2405-0

Keywords

Navigation