Skip to main content

Advertisement

Log in

The energy required to ignite micropyretic synthesis. Part I: stable Ni + Al reaction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The progression of chemical reactions is determined by both thermodynamics and kinetics factors. Micropyretic/combustion reaction is a cascade of many chain chemical reactions and thermodynamics and kinetics of the ignition reaction are expected to greatly affect the overall reaction outcome. Furthermore, the stability of the sequential reaction and its progression are correspondingly changed once micropyretic parameters are changed. Improper ignition of micropyretic reaction provides either excessive or insufficient external energy, thus causes over-heating or extinguishing of the combustion front during propagation and therefore the heterogeneous structures. To achieve the homogeneous micropyretic reaction, it is thought possible to control ignition energy. A numerical study on the correlation of thermodynamics and kinetics factors of ignition on the stable Ni + Al reaction and the required ignition energy is reported in this study. The influences of activation energy (E), enthalpy of the micropyretic reaction (Q), pre-exponential factor (K o), thermal conductivity (K), heat capacity (C p), and thermal activity of the reactants and product, on the temperature/heat loss at the ignition spot and the length of pre-heating zone are respectively studied. It is found that the activation energy and heat capacity have the most significant effects on the ignition energy. The required ignition energy is increased by 44.0% and 23.9%, respectively, when the activation energy and the heat capacity are both increased by 40.0%

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lakshmikantha MG, Bhattacharys A, Sekhar JA (1992) Metall Trans A 23A:23

    Article  CAS  Google Scholar 

  2. Lakshmikantha MG, Sekhar JA (1993) Metall Trans A 24:617

    Article  Google Scholar 

  3. Subramanian V, Lakshmikantha MG, Sekhar JA (1995) J Mater Res 10:1235

    Article  CAS  Google Scholar 

  4. Munir ZA, Anselmi-Tamburini U (1989) Mater Sci Rep 3:277

    Article  CAS  Google Scholar 

  5. Merzhanov AG, Khaikin BI (1988) Prog Energ Combust Sci 14:1

    Article  CAS  Google Scholar 

  6. Li HP (2002) J Mater Res 17:3213

    Article  CAS  Google Scholar 

  7. Li HP (2003) Acta Mater 51:3213

    Article  CAS  Google Scholar 

  8. Li HP (2003) Metall Mater Trans A 34(9):1969

    Article  Google Scholar 

  9. Li HP (2004) Scripta Mater 50(7):999

    Article  CAS  Google Scholar 

  10. Li HP (2005) Chem Eng Sci 4:925

    Article  Google Scholar 

  11. Li HP (2005) Acta Mater 53:2405

    Article  CAS  Google Scholar 

  12. Lee WC, Chung SL (1995) J Mater Sci 30:1487

    Article  CAS  Google Scholar 

  13. Shen P, Guo ZX, Hu JD, Lian JS, Sun BY (2000) Scripta Mater 43:893

    Article  CAS  Google Scholar 

  14. Bertolino N, Monagheddu M, Tacca A, Giuliani P, Zanotti C, Tamburini UA (2003) Intermetallics 11:41

    Article  CAS  Google Scholar 

  15. Deidda C, Delogu F, Maglia F, Anselmi-Tamburini U, Cocco G (2004) Mater Sci Eng A 375–377:800

    Article  Google Scholar 

  16. He C, Stangle GC (1998) J Mater Res 13(1):135

    Article  Google Scholar 

  17. Dong S, Hou P, Cheng H, Yang H, Zou G (2002) J Phys-Condens Mat 14(44):11023

    Article  CAS  Google Scholar 

  18. Hunt EM, Plantier KB, Pantoya ML (2004) Acta Mater 52(11):3183

    Article  CAS  Google Scholar 

  19. Brain I, Knacke O, Kubaschewski O (1973) Thermochemical properties of inorganic substances. Springer-Verlag, New York

    Google Scholar 

  20. Lide DR (1990) CRC handbook of chemistry, physics. CRC, Boca Raton

    Google Scholar 

  21. Brandes EA, Brook GB (1992) Smithells metals reference book. Butterworth-Heinemann Ltd

  22. Naiborodenko YS, Itin VI (1975) Combust Explos Shock Waves 11(3):293

    Article  Google Scholar 

Download references

Acknowledgements

The supports from National Center for High-Performance Computing (account number: u48hpl00) and National Science Council (Grant number: NSC95-2221-E-228-002) in Taiwan are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.P. The energy required to ignite micropyretic synthesis. Part I: stable Ni + Al reaction. J Mater Sci 43, 1688–1695 (2008). https://doi.org/10.1007/s10853-007-2370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2370-7

Keywords

Navigation