Skip to main content
Log in

Thermoelectric properties of perovskite oxides La1−xSrxCoO3 prepared by polymerlized complex method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

P-type perovskite oxides La1−xSrxCoO3 (0 ≤ x ≤ 0.2) have been prepared using a polymerlized complex method and sintering. The Seebeck coefficient, electrical conductivity, and thermal conductivity of the oxides were studied from room temperature to 773 K. The ln(σT)−1/T relationships revealed small-polaron hopping mechanism for the higher Sr contents. Large Seebeck coefficients were observed in lightly Sr-doped samples. Sr doping greatly reduced the Seebeck coefficient and enhanced the electrical and thermal conductivity of the samples. The temperature-induced spin-state transition of Co3+ ions strongly influenced the transport properties. The highest ZT value found in this series of oxides was 0.046 at 300 K for x = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DiSalvo FJ (1999) Science 285:703

    Article  CAS  Google Scholar 

  2. Sales BC (2002) Science 295:1248

    Article  CAS  Google Scholar 

  3. Yamashita O, Tomiyoshi S, Makita K (2003) J Appl Phys 93:368

    Article  CAS  Google Scholar 

  4. Sales BC, Mandrus D, Williams RK (1996) Science 272:1325

    Article  CAS  Google Scholar 

  5. Koga T, Cronin SB, Dresselhaus MS, Liu JL, Wang KL (2000) Appl Phys Lett 77:1490

    Article  CAS  Google Scholar 

  6. Androulakis J, Migiakis P, Giapintzakis J (2004) Appl Phys Lett 84:1099

    Article  CAS  Google Scholar 

  7. Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:12685

    Article  Google Scholar 

  8. Prevel M, Lemonnier S, Klein Y, Hebert S, Chateigner D, Ouladdiaf B, Noudem JG (2005) J Appl Phys 98:093706

    Article  Google Scholar 

  9. Hu YF, Sutter E, Si WD, Li Q (2005) Appl Phys Lett 87:171912

    Article  Google Scholar 

  10. Liu YH, Lin YH, Shi Z, Nan CW, Shen ZJ (2005) J Am Ceram Soc 88:1337

    Article  CAS  Google Scholar 

  11. Inagaki T, Miura K, Yoshida H, Maric R, Ohara S, Zhang X, Mukai K, Fukui T (2000) J Power Sources 86:347

    Article  CAS  Google Scholar 

  12. Wang F, Leppavuori S (1997) J Appl Phys 82:1293

    Article  CAS  Google Scholar 

  13. Chen CH, Bouwmeester HJM, van Doorn RHE, Kruidhof H, Burggraaf AJ (1997) Solid State Ionics 98:7

    Article  CAS  Google Scholar 

  14. Senarís-Rodríguez MA, Goodenough JB (1995) J Solid State Chem 118:323

    Article  Google Scholar 

  15. Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51

    Article  CAS  Google Scholar 

  16. Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimuth A, Lorenz T (2005) Phys Rev B 72:155116

    Article  Google Scholar 

  17. Zhou AJ, Zhu TJ, Zhao XB (2006) Mater Sci Eng B 128:174

    Article  CAS  Google Scholar 

  18. Shannon RD, Prewitt CT (1969) Acta Cryst B25:925

    Article  Google Scholar 

  19. Senarís-Rodríguez MA, Goodenough JB (1995) J Solid State Chem 116:224

    Article  Google Scholar 

  20. Zhang X, Li XM, Chen TL, Chen LD (2006) J Cryst Growth 286:1

    Article  CAS  Google Scholar 

  21. Mineshige A, Kobune M, Fujii S, Ogumi Z, Inaba M, Yao T, Kikuchi K (1999) J Solid State Chem 142:374

    Article  CAS  Google Scholar 

  22. Koshibae W, Tsutsui K, Maekawa S (2000) Phys Rev B 62:6869

    Article  CAS  Google Scholar 

  23. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597

    Article  CAS  Google Scholar 

  24. Takahata K, Iguchi Y, Tanaka D, Itoh T, Terasaki I (2000) Phys Rev B 61:12551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. E. Müller, Dr. C. Stiewe, and W. Schönau from Institute of Materials Research, German Aerospace Center (DLR), for the measurements of thermal properties. TJZ would like to thank Dr. Jian He from Department of Physics and Astronomy, Clemson University, USA, for the discussion and comments. This work was supported by the National Science Foundation of China (50471039, 50522203) and PFDP of the Education Ministry of China (20060335126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, A.J., Zhu, T.J. & Zhao, X.B. Thermoelectric properties of perovskite oxides La1−xSrxCoO3 prepared by polymerlized complex method. J Mater Sci 43, 1520–1524 (2008). https://doi.org/10.1007/s10853-007-2365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2365-4

Keywords

Navigation