Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4742–4748 | Cite as

Synthesis and characterization of layered and scrolled amine-templated vanadium oxides

  • Megan Roppolo
  • Christopher B. Jacobs
  • Shailesh Upreti
  • Natasha A. Chernova
  • M. Stanley Whittingham
Reactivity of Solids

Abstract

In order to fully understand the formation mechanism, structure, and role of structural curvature of vanadium oxide nanotubes (VONTs), two isostructural materials (one planar and the other curved)—ethylenediammonium (enH2) intercalated V7O16 and vanadium oxide nanourchins (VONUs)—were synthesized and characterized via X-ray diffraction (XRD), electron microscopy, thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy, and magnetic measurements. The synthesis route to (enH2)V7O16 is developed using vanadium pentoxide as a starting material and employing pH control. VONUs are synthesized using n-dodecylamine as an amine template for the first time. We demonstrate that the structure of the vanadium oxide layer in these compounds is similar to that of VONTs and their magnetic properties all fit to the same model including the temperature-independent, Curie–Weiss, and spin ½ antiferromagnetic dimer contributions. The vanadium oxidation state in tubular structures appears to be higher than in planar compounds such as (eH2)V7O16 and BaV7O16. The role of the template and vanadium reduction in the formation of nanotubes is discussed.

Keywords

Vanadium Thermal Gravimetric Analysis Vanadium Oxide Vanadium Pentoxide Dodecylamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The financial support from the National Science Foundation through grant DMR-0705657 is greatly appreciated.

References

  1. 1.
    Chirayil TA, Zavalij PY, Whittingham MS (1996) J Electrochem Soc 143:L193CrossRefGoogle Scholar
  2. 2.
    Whittingham MS, Song Y, Lutta S, Zavalij PY, Chernova NA (2005) J Mater Chem 15:3362CrossRefGoogle Scholar
  3. 3.
    Nordlinder S, Nyholm L, Gustafsson T, Edstrom K (2006) Chem Mater 18:495CrossRefGoogle Scholar
  4. 4.
    Zavalij PY, Whittingham MS (1999) Acta Cryst B 55:627CrossRefGoogle Scholar
  5. 5.
    Chirayil T, Zavalij PY, Whittingham MS (1998) Chem Mater 10:2629CrossRefGoogle Scholar
  6. 6.
    Spahr ME, Bitterli P, Nesper R, Müller M, Krumeich F, Nissen HU (1998) Angew Chem Int Ed 37:1263CrossRefGoogle Scholar
  7. 7.
    Petkov V, Zavalij PY, Lutta S, Whittingham MS, Parvanov V, Shastri S (2004) Phys Rev B 69:085410CrossRefGoogle Scholar
  8. 8.
    Dobley A, Ngala K, Yang S, Zavalij PY, Whittingham MS (2001) Chem Mater 13:4382CrossRefGoogle Scholar
  9. 9.
    Spahr ME, Stoschitzki-Bitterli P, Nesper R, Haas O, Novak P (1999) J Electrochem Soc 146:2780CrossRefGoogle Scholar
  10. 10.
    Wörle M, Krumeich F, Bieri F, Muhr H, Nesper R (2002) Z Anorg Allg Chem 628:2778CrossRefGoogle Scholar
  11. 11.
    O’Dwyer C, Navas D, Lavayen V, Benavente E, Santa Ana MA, Gonzalez G, Newcomb SB, Sotomayor Torres CM (2006) Chem Mater 18:3016CrossRefGoogle Scholar
  12. 12.
    Wang X, Liu L, Bontchev R, Jacobson AJ (1998) Chem Comm 1009Google Scholar
  13. 13.
    Niederberger M, Muhr H-J, Krumeich F, Bieri F, Gunther D, Nesper R (2000) Chem Mater 12:1995CrossRefGoogle Scholar
  14. 14.
    Furman NH (1962) Standard methods of chemical analysis. D. Van Nostrand Company Inc., New YorkGoogle Scholar
  15. 15.
    Chirayil TG, Boylan EA, Mamak M, Zavalij PY, Whittingham MS (1997) Chem Comm 33Google Scholar
  16. 16.
    Zhang Y, Haushalter RC, Clearfield A (1996) Inorg Chem 35:4950CrossRefGoogle Scholar
  17. 17.
    Conley RT (1966) Infrared spectroscopy. Allyn and Bacon Inc., BostonGoogle Scholar
  18. 18.
    Azambre B, Hudson MJ, Heintz O (2003) J Mater Chem 13:385CrossRefGoogle Scholar
  19. 19.
    Chen W, Mai LQ, Peng JF, Xu Q, Zhu QY (2004) J Mater Sci 39:2625. doi: 10.1023/B:JMSC.0000020044.67931.ad Google Scholar
  20. 20.
    Krusin-Elbaum L, Newns DM, Zeng H, Derycke V, Sun JZ, Sandstrom R (2004) Nature 431:627CrossRefGoogle Scholar
  21. 21.
    Jacobs C, Roppolo M, Butterworth K, Ban C, Chernova NA, Whittingham MS (2007) Mater Res Soc Proc 988E:QQ03Google Scholar
  22. 22.
    Carlin RL (1986) Magnetochemistry. Springer-Verlag, Berlin, p 75Google Scholar
  23. 23.
    Lutta ST, Chernova NA, Zavalij PY, Whittingham MS (2004) J Mater Chem 14:2922CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Megan Roppolo
    • 1
  • Christopher B. Jacobs
    • 1
  • Shailesh Upreti
    • 1
  • Natasha A. Chernova
    • 1
  • M. Stanley Whittingham
    • 1
  1. 1.Department of Chemistry and Institute for Materials ResearchState University of New York at BinghamtonBinghamtonUSA

Personalised recommendations