Advertisement

Journal of Materials Science

, Volume 43, Issue 5, pp 1552–1558 | Cite as

Light-induced bone cement-philic titanium surface

  • Hideki Aita
  • Won Oh
  • Katsuhiko Kubo
  • Naoki Tsukimura
  • Hatsuhiko Maeda
  • Takahiro Ogawa
Article

Abstract

The survival of cemented endosseous implants can be improved by enhancing the bond between the implant and the cement. We hypothesized that the light-inducible generation of super-hydrophilicity of titanium positively affects its bone cement-philicity and bone cement–titanium bonding. Commercially pure titanium disks with machined surface and acid-etched micro roughened surfaces were prepared. Ultra-violet (UV) light treatment (0.1 mW/cm2 UVA and 0.03 mW/cm2 UVB for 48 h) created a super-hydrophilic surface for both surface types. The area of poly-methyl methacrylate (PMMA)-based bone cement spread increased by 30% and 20% on the light-treated machined titanium and acid-etched titanium surfaces, respectively, compared to the matched untreated ones. The contact angle of the bone cement decreased significantly after the light treatment, confirming the enhanced wettability of bone cement by the light treatment. Interfacial tensile stress between the bone cement material and titanium was increased 100% for the machined surface and 50% for the acid-etched surface by light treatment. Interfacial shear stress measured by a push-out test of titanium rods also revealed a 40% increase for the machined surface and 25% increase for the acid-etched surface. In conclusion, the pre-UV light treatment of titanium enhances the wettability and bonding strength of poly-methyl-methacrylate-based bone cement.

Keywords

Contact Angle Machine Surface Bone Cement Light Treatment Titanium Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This study has been supported by Nissenken Institute.

References

  1. 1.
    Berry DJ, Harmsen WS, Ilstrup DM (1998). J Bone Joint Surg Am 80(5):715Google Scholar
  2. 2.
    Vora A, Kudrna JC, Harder VS, Mazahery B (2003). J Arthroplasty 18(7):889CrossRefGoogle Scholar
  3. 3.
    D’Lima DD, Oishi CS, Petersilge WJ, Colwell CW Jr, Walker RH (1998) Clin Orthop Relat Res 348:140CrossRefGoogle Scholar
  4. 4.
    Jasty M, Maloney WJ, Bragdon CR, O’Connor DO, Haire T, Harris WH (1991) J Bone Joint Surg Br 73(4):551Google Scholar
  5. 5.
    Mohler CG, Callaghan JJ, Collis DK, Johnston RC (1995) J Bone Joint Surg Am 77(9):1315Google Scholar
  6. 6.
    Muller RT, Heger I, Oldenburg M (1997) Arch Orthop Trauma Surg 116(1–2):41Google Scholar
  7. 7.
    Gardiner RC, Hozack WJ (1994) J Bone Joint Surg Br 76(1):49Google Scholar
  8. 8.
    Verdonschot N, Huiskes R (1997) J Biomech 30(8):795CrossRefGoogle Scholar
  9. 9.
    Davies JP, Singer G, Harris WH (1992) J Appl Biomater 3(1):45CrossRefGoogle Scholar
  10. 10.
    Clohisy JC, Harris WH (1999) J Bone Joint Surg Am 81(2):247Google Scholar
  11. 11.
    Lucksanasombool P, Higgs WA, Ignat M, Higgs RJ, Swain MV (2003) J Biomed Mater Res A 64(1):93CrossRefGoogle Scholar
  12. 12.
    Gilbert JL, Ney DS, Lautenschlager EP (1995) Biomaterials 16(14):1043CrossRefGoogle Scholar
  13. 13.
    Wright DD, Lautenschlager EP, Gilbert JL (1997) J Biomed Mater Res 36(4):441CrossRefGoogle Scholar
  14. 14.
    Kobayashi M, Nakamura T, Shinzato S, Mousa WF, Nishio K, Ohsawa K, Kokubo T, Kikutani T (1999) J Biomed Mater Res 46(4):447CrossRefGoogle Scholar
  15. 15.
    Shinzato S, Kobayashi M, Mousa WF, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T (2000) J Biomed Mater Res 51(2):258CrossRefGoogle Scholar
  16. 16.
    Park JB, von Recum AF, Gratzick GE (1979) Biomater Med Devices Artif Organs 7(1):41Google Scholar
  17. 17.
    Oishi CS, Walker RH, Colwell CW Jr (1994) J Bone Joint Surg Am 76(8):1130Google Scholar
  18. 18.
    Muller RT, Schurmann N (1999) Arch Orthop Trauma Surg 119(3–4):133Google Scholar
  19. 19.
    Davies JP, Harris WH (1993) Clin Mater 12(2):121CrossRefGoogle Scholar
  20. 20.
    Shepard MF, Kabo JM, Lieberman JR (2000) Clin Orthop Relat Res 381:26CrossRefGoogle Scholar
  21. 21.
    Vaughn BK, Fuller E, Peterson R, Capps SG (2003) J Arthroplasty 18(7 Suppl 1):110CrossRefGoogle Scholar
  22. 22.
    Wang R, Hashimoto K, Fujishima A (1997) Nature 388:431CrossRefGoogle Scholar
  23. 23.
    Kasemo B, Lausmaa J (1988) J Biomed Mater Res 22(A2 Suppl):145CrossRefGoogle Scholar
  24. 24.
    Kilpadi DV, Lemons JE, Liu J, Raikar GN, Weimer JJ, Vohra Y (2000) Int J Oral Maxillofac Implants 15(2):219Google Scholar
  25. 25.
    Serro AP, Saramago B (2003) Biomaterials 24(26):4749CrossRefGoogle Scholar
  26. 26.
    Oshida Y, Sachdeva R, Miyazaki S (1992) J Mater Sci Mater Med 3:306CrossRefGoogle Scholar
  27. 27.
    Ogawa T, Ozawa S, Shih JH, Ryu KH, Sukotjo C, Yang JM, Nishimura I (2000) J Dent Res 79(11):1857CrossRefGoogle Scholar
  28. 28.
    Mulroy WF, Estok DM, Harris WH (1995) J Bone Joint Surg Am 77(12):1845Google Scholar
  29. 29.
    Sanchez-Sotelo J, Berry DJ, Harmsen S (2002) J Bone Joint Surg Am 84–A(9):1636Google Scholar
  30. 30.
    Mulroy WF, Harris WH (1996) J Bone Joint Surg Am 78(3):325Google Scholar
  31. 31.
    Chen PC, Pinto JG, Mead EH, D’Lima DD, Colwell CW Jr (1998) Clin Orthop Relat Res 350:229CrossRefGoogle Scholar
  32. 32.
    Howie DW, Middleton RG, Costi K (1998) J Bone Joint Surg Br 80(4):573CrossRefGoogle Scholar
  33. 33.
    Sporer SM, Callaghan JJ, Olejniczak JP, Goetz DD, Johnston RC (1999) J Bone Joint Surg Am 81(4):481Google Scholar
  34. 34.
    Korovessis P, Repanti M (1994) Clin Orthop Relat Res 300:155Google Scholar
  35. 35.
    La Budde JK, Orosz JF, Bonfiglio TA, Pellegrini VD Jr (1994) J Arthroplasty 9(3):291CrossRefGoogle Scholar
  36. 36.
    Fowler JL, Gie GA, Lee AJ, Ling RS (1988) Orthop Clin North Am 19(3):477Google Scholar
  37. 37.
    Kummer FJ, Jaffe WL (1992) J Appl Biomater 3(3):211CrossRefGoogle Scholar
  38. 38.
    Iesaka K, Jaffe WL, Jones CM, Kummer FJ (2005) J Bone Joint Surg Br 87(9):1298CrossRefGoogle Scholar
  39. 39.
    Kommireddy DS, Patel AA, Shutava TG, Mills DK, Lvov YM (2005) J Nanosci Nanotechnol 5(7):1081CrossRefGoogle Scholar
  40. 40.
    Yang J, Zhang J, Zhu L, Chen S, Zhang Y, Tang Y, Zhu Y, Li Y (2006) J Hazard Mater 137:952Google Scholar
  41. 41.
    Fischer H, Wirtz DC, Weber M, Neuss M, Niethard FU, Marx R (2001) J Biomed Mater Res 57(3):413CrossRefGoogle Scholar
  42. 42.
    Knabe C, Howlett CR, Klar F, Zreiqat H (2004) J Biomed Mater Res A 71(1):98CrossRefGoogle Scholar
  43. 43.
    Wang J, van Apeldoorn A, de Groot K (2006) J Biomed Mater Res A 76(3):503Google Scholar
  44. 44.
    Pilliar RM (2005) Orthop Clin North Am 36(1):113CrossRefGoogle Scholar
  45. 45.
    Sporer SM, Paprosky WG (2005) Orthop Clin North Am 36(1):105, viiCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hideki Aita
    • 1
  • Won Oh
    • 1
  • Katsuhiko Kubo
    • 1
    • 2
  • Naoki Tsukimura
    • 1
  • Hatsuhiko Maeda
    • 2
  • Takahiro Ogawa
    • 1
  1. 1.Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, The Jane and Jerry Weintraub Center for Reconstructive BiotechnologyUCLA School of DentistryLos AngelesUSA
  2. 2.Department of Pathology, School of DentistryAichi-Gakuin UniversityNagoyaJapan

Personalised recommendations